966 resultados para Wet tropical forests
Resumo:
The production of aboveground soft tissue represents an important share of total net primary production in tropical rain forests. Here we draw from a large number of published and unpublished datasets (n = 81 sites) to assess the determinants of litterfall variation across South American tropical forests. We show that across old-growth tropical rainforests, litterfall averages 8.61±1.91Mgha?1 yr?1 (mean±standard deviation, in dry mass units). Secondary forests have a lower annual litterfall than old-growth tropical forests with a mean of 8.01±3.41Mgha?1 yr?1. Annual litterfall shows no significant variation with total annual rainfall, either globally or within forest types. It does not vary consistently with soil type, except in the poorest soils (white sand soils), where litterfall is significantly lower than in other soil types (5.42±1.91Mgha?1 yr?1). We also study the determinants of litterfall seasonality, and find that it does not depend on annual rainfall or on soil type. However, litterfall seasonality is significantly positively correlated with rainfall seasonality. Finally, we assess how much carbon is stored in reproductive organs relative to photosynthetic organs. Mean leaf fall is 5.74±1.83Mgha?1 yr?1 (71% of total litterfall). Mean allocation into reproductive organs is 0.69±0.40Mgha?1 yr?1 (9% of total litterfall). The investment into reproductive organs divided by leaf litterfall increases with soil fertility, suggesting that on poor soils, the allocation to photosynthetic organs is prioritized over that to reproduction. Finally, we discuss the ecological and biogeochemical implications of these results.
Resumo:
Los estudios sobre la asignación del carbono en los ecosistemas forestales proporcionan información esencial para la comprensión de las diferencias espaciales y temporales en el ciclo del carbono de tal forma que pueden aportar información a los modelos y, así predecir las posibles respuestas de los bosques a los cambios en el clima. Dentro de este contexto, los bosques Amazónicos desempeñan un papel particularmente importante en el balance global del carbono; no obstante, existen grandes incertidumbres en cuanto a los controles abióticos en las tasas de la producción primaria neta (PPN), la asignación de los productos de la fotosíntesis a los diferentes componentes o compartimentos del ecosistema (aéreo y subterráneo) y, cómo estos componentes de la asignación del carbono responden a eventos climáticos extremos. El objetivo general de esta tesis es analizar los componentes de la asignación del carbono en bosques tropicales maduros sobre suelos contrastantes, que crecen bajo condiciones climáticas similares en dos sitios ubicados en la Amazonia noroccidental (Colombia): el Parque Natural Nacional Amacayacu y la Estación Biológica Zafire. Con este objetivo, realicé mediciones de los componentes de la asignación del carbono (biomasa, productividad primaria neta, y su fraccionamiento) a nivel ecosistémico y de la dinámica forestal (tasas anuales de mortalidad y reclutamiento), a lo largo de ocho años (20042012) en seis parcelas permanentes de 1 hectárea establecidas en cinco tipos de bosques sobre suelos diferentes (arcilloso, franco-arcilloso, franco-arcilloso-arenoso, franco-arenoso y arena-francosa). Toda esta información me permitió abordar preguntas específicas que detallo a continuación. En el Capítulo 2 evalúe la hipótesis de que a medida que aumenta la fertilidad del suelo disminuye la cantidad del carbono asignado a la producción subterránea (raíces finas con diámetro <2 mm). Y para esto, realicé mediciones de la masa y la producción de raíces finas usando dos métodos: (1) el de los cilindros de crecimiento y, (2) el de los cilindros de extracción secuencial. El monitoreo se realizó durante 2.2 años en los bosques con suelos más contrastantes: arcilla y arena-francosa. Encontré diferencias significativas en la masa de raíces finas y su producción entre los bosques y, también con respecto a la profundidad del suelo (010 y 1020 cm). El bosque sobre arena-francosa asignó más carbono a las raíces finas que el bosque sobre arcillas. La producción de raíces finas en el bosque sobre arena-francosa fue dos veces más alta (media ± error estándar = 2.98 ± 0.36 y 3.33 ± 0.69 Mg C ha1 año1, con el método 1 y 2, respectivamente), que para el bosque sobre arcillas, el suelo más fértil (1.51 ± 0.14, método 1, y desde 1.03 ± 0.31 a 1.36 ± 0.23 Mg C ha1 año1, método 2). Del mismo modo, el promedio de la masa de raíces finas fue tres veces mayor en el bosque sobre arena-francosa (5.47 ± 0.17 Mg C ha1) que en el suelo más fértil (de 1.52 ± 0.08 a 1.82 ± 0.09 Mg C ha1). La masa de las raíces finas también mostró un patrón temporal relacionado con la lluvia, mostrando que la producción de raíces finas disminuyó sustancialmente en el período seco del año 2005. Estos resultados sugieren que los recursos del suelo pueden desempeñar un papel importante en los patrones de la asignación del carbono entre los componentes aéreo y subterráneo de los bosques tropicales; y que el suelo no sólo influye en las diferencias en la masa de raíces finas y su producción, sino que también, en conjunto con la lluvia, sobre la estacionalidad de la producción. En el Capítulo 3 estimé y analicé los tres componentes de la asignación del carbono a nivel del ecosistema: la biomasa, la productividad primaria neta PPN, y su fraccionamiento, en los mismos bosques del Capítulo 2 (el bosque sobre arcillas y el bosque sobre arena-francosa). Encontré diferencias significativas en los patrones de la asignación del carbono entre los bosques; el bosque sobre arcillas presentó una mayor biomasa total y aérea, así como una PPN, que el bosque sobre arena-francosa. Sin embargo, la diferencia entre los dos bosques en términos de la productividad primaria neta total fue menor en comparación con las diferencias entre la biomasa total de los bosques, como consecuencia de las diferentes estrategias en la asignación del carbono a los componentes aéreo y subterráneo del bosque. La proporción o fracción de la PPN asignada a la nueva producción de follaje fue relativamente similar entre los dos bosques. Nuestros resultados de los incrementos de la biomasa aérea sugieren una posible compensación entre la asignación del carbono al crecimiento de las raíces finas versus el de la madera, a diferencia de la compensación comúnmente asumida entre la parte aérea y la subterránea en general. A pesar de estas diferencias entre los bosques en términos de los componentes de la asignación del carbono, el índice de área foliar fue relativamente similar entre ellos, lo que sugiere que el índice de área foliar es más un indicador de la PPN total que de la asignación de carbono entre componentes. En el Capítulo 4 evalué la variación espacial y temporal de los componentes de la asignación del carbono y la dinámica forestal de cinco tipos e bosques amazónicos y sus respuestas a fluctuaciones en la precipitación, lo cual es completamente relevante en el ciclo global del carbono y los procesos biogeoquímicos en general. Estas variaciones son así mismo importantes para evaluar los efectos de la sequía o eventos extremos sobre la dinámica natural de los bosques amazónicos. Evalué la variación interanual y la estacionalidad de los componentes de la asignación del carbono y la dinámica forestal durante el periodo 2004−2012, en cinco bosques maduros sobre diferentes suelos (arcilloso, franco-arcilloso, franco-arcilloso-arenoso, franco-arenoso y arena-francosa), todos bajo el mismo régimen local de precipitación en la Amazonia noroccidental (Colombia). Quería examinar sí estos bosques responden de forma similar a las fluctuaciones en la precipitación, tal y como pronostican muchos modelos. Consideré las siguientes preguntas: (i) ¿Existe una correlación entre los componentes de la asignación del carbono y la dinámica forestal con la precipitación? (ii) ¿Existe correlación entre los bosques? (iii) ¿Es el índice de área foliar (LAI) un indicador de las variaciones en la producción aérea o es un reflejo de los cambios en los patrones de la asignación del carbono entre bosques?. En general, la correlación entre los componentes aéreo y subterráneo de la asignación del carbono con la precipitación sugiere que los suelos juegan un papel importante en las diferencias espaciales y temporales de las respuestas de estos bosques a las variaciones en la precipitación. Por un lado, la mayoría de los bosques mostraron que los componentes aéreos de la asignación del carbono son susceptibles a las fluctuaciones en la precipitación; sin embargo, el bosque sobre arena-francosa solamente presentó correlación con la lluvia con el componente subterráneo (raíces finas). Por otra parte, a pesar de que el noroeste Amazónico es considerado sin una estación seca propiamente (definida como <100 mm meses −1), la hojarasca y la masa de raíces finas mostraron una alta variabilidad y estacionalidad, especialmente marcada durante la sequía del 2005. Además, los bosques del grupo de suelos francos mostraron que la hojarasca responde a retrasos en la precipitación, al igual que la masa de raíces finas del bosque sobre arena-francosa. En cuanto a la dinámica forestal, sólo la tasa de mortalidad del bosque sobre arena-francosa estuvo correlacionada con la precipitación (ρ = 0.77, P <0.1). La variabilidad interanual en los incrementos en el tallo y la biomasa de los individuos resalta la importancia de la mortalidad en la variación de los incrementos en la biomasa aérea. Sin embargo, las tasas de mortalidad y las proporciones de individuos muertos por categoría de muerte (en pie, caído de raíz, partido y desaparecido), no mostraron tendencias claras relacionadas con la sequía. Curiosamente, la hojarasca, el incremento en la biomasa aérea y las tasas de reclutamiento mostraron una alta correlación entre los bosques, en particular dentro del grupo de los bosques con suelos francos. Sin embargo, el índice de área foliar estimado para los bosques con suelos más contrastantes (arcilla y arena-francosa), no presentó correlación significativa con la lluvia; no obstante, estuvo muy correlacionado entre bosques; índice de área foliar no reflejó las diferencias en la asignación de los componentes del carbono, y su respuesta a la precipitación en estos bosques. Por último, los bosques estudiados muestran que el noroeste amazónico es susceptible a fenómenos climáticos, contrario a lo propuesto anteriormente debido a la ausencia de una estación seca propiamente dicha. ABSTRACT Studies of carbon allocation in forests provide essential information for understanding spatial and temporal differences in carbon cycling that can inform models and predict possible responses to changes in climate. Amazon forests play a particularly significant role in the global carbon balance, but there are still large uncertainties regarding abiotic controls on the rates of net primary production (NPP) and the allocation of photosynthetic products to different ecosystem components; and how the carbon allocation components of Amazon forests respond to extreme climate events. The overall objective of this thesis is to examine the carbon allocation components in old-growth tropical forests on contrasting soils, and under similar climatic conditions in two sites at the Amacayacu National Natural Park and the Zafire Biological Station, located in the north-western Amazon (Colombia). Measurements of above- and below-ground carbon allocation components (biomass, net primary production, and its partitioning) at the ecosystem level, and dynamics of tree mortality and recruitment were done along eight years (20042012) in six 1-ha plots established in five Amazon forest types on different soils (clay, clay-loam, sandy-clay-loam, sandy-loam and loamy-sand) to address specific questions detailed in the next paragraphs. In Chapter 2, I evaluated the hypothesis that as soil fertility increases the amount of carbon allocated to below-ground production (fine-roots) should decrease. To address this hypothesis the standing crop mass and production of fine-roots (<2 mm) were estimated by two methods: (1) ingrowth cores and, (2) sequential soil coring, during 2.2 years in the most contrasting forests: the clay-soil forest and the loamy-sand forest. We found that the standing crop fine-root mass and its production were significantly different between forests and also between soil depths (0–10 and 10–20 cm). The loamysand forest allocated more carbon to fine-roots than the clay-soil forest, with fine-root production in the loamy-sand forest twice (mean ± standard error = 2.98 ± 0.36 and 3.33 ± 0.69 Mg C ha −1 yr −1, method 1 and 2, respectively) as much as for the more fertile claysoil forest (1.51 ± 0.14, method 1, and from 1.03 ± 0.31 to 1.36 ± 0.23 Mg C ha −1 yr −1, method 2). Similarly, the average of standing crop fine-root mass was three times higher in the loamy-sand forest (5.47 ± 0.17 Mg C ha1) than in the more fertile soil (from 1.52 ± 0.08 a 1.82 ± 0.09 Mg C ha1). The standing crop fine-root mass also showed a temporal pattern related to rainfall, with the production of fine-roots decreasing substantially in the dry period of the year 2005. These results suggest that soil resources may play an important role in patterns of carbon allocation of below-ground components, not only driven the differences in the biomass and its production, but also in the time when it is produced. In Chapter 3, I assessed the three components of stand-level carbon allocation (biomass, NPP, and its partitioning) for the same forests evaluated in Chapter 2 (clay-soil forest and loamy-sand forest). We found differences in carbon allocation patterns between these two forests, showing that the forest on clay-soil had a higher aboveground and total biomass as well as a higher above-ground NPP than the loamy-sand forest. However, differences between the two types of forests in terms of stand-level NPP were smaller, as a consequence of different strategies in the carbon allocation of above- and below-ground components. The proportional allocation of NPP to new foliage production was relatively similar between the two forests. Our results of aboveground biomass increments and fine-root production suggest a possible trade-off between carbon allocation to fine-roots versus wood growth (as it has been reported by other authors), as opposed to the most commonly assumed trade-off between total above- and below-ground production. Despite these differences among forests in terms of carbon allocation components, the leaf area index showed differences between forests like total NPP, suggesting that the leaf area index is more indicative of total NPP than carbon allocation. In Chapter 4, I evaluated the spatial and temporal variation of carbon allocation components and forest dynamics of Amazon forests as well as their responses to climatic fluctuations. I evaluated the intra- and inter-annual variation of carbon allocation components and forest dynamics during the period 2004−2012 in five forests on different soils (clay, clay-loam, sandy-clay-loam, sandy-loam and loamy-sand), but growing under the same local precipitation regime in north-western Amazonia (Colombia). We were interested in examining if these forests respond similarly to rainfall fluctuations as many models predict, considering the following questions: (i) Is there a correlation in carbon allocation components and forest dynamics with precipitation? (ii) Is there a correlation among forests? (iii) Are temporal responses in leaf area index (LAI) indicative of variations of above-ground production or a reflection of changes in carbon allocation patterns among forests?. Overall, the correlation of above- and below-ground carbon allocation components with rainfall suggests that soils play an important role in the spatial and temporal differences of responses of these forests to rainfall fluctuations. On the one hand, most forests showed that the above-ground components are susceptible to rainfall fluctuations; however, there was a forest on loamy-sand that only showed a correlation with the below-ground component (fine-roots). On the other hand, despite the fact that north-western Amazonia is considered without a conspicuous dry season (defined as <100 mm month−1), litterfall and fine-root mass showed high seasonality and variability, particularly marked during the drought of 2005. Additionally, forests of the loam-soil group showed that litterfall respond to time-lags in rainfall as well as and the fine-root mass of the loamy-sand forest. With regard to forest dynamics, only the mortality rate of the loamy-sand forest was significantly correlated with rainfall (77%). The observed inter-annual variability of stem and biomass increments of individuals highlighted the importance of the mortality in the above-ground biomass increment. However, mortality rates and death type proportion did not show clear trends related to droughts. Interestingly, litterfall, above-ground biomass increment and recruitment rates of forests showed high correlation among forests, particularly within the loam-soil forests group. Nonetheless, LAI measured in the most contrasting forests (clay-soil and loamysand) was poorly correlated with rainfall but highly correlated between forests; LAI did not reflect the differences in the carbon allocation components, and their response to rainfall on these forests. Finally, the forests studied highlight that north-western Amazon forests are also susceptible to climate fluctuations, contrary to what has been proposed previously due to their lack of a pronounced dry season.
Resumo:
Although tree ferns are an important component of temperate and tropical forests, very little is known about their ecology. Their peculiar biology (e.g., dispersal by spores and two-phase life cycle) makes it difficult to extrapolate current knowledge on the ecology of other tree species to tree ferns. In this paper, we studied the effects of negative density dependence (NDD) and environmental heterogeneity on populations of two abundant tree fern species, Cyathea caracasana and Alsophila engelii, and how these effects change across a successional gradient. Species patterns harbor information on processes such as competition that can be easily revealed using point pattern analysis techniques. However, its detection may be difficult due to the confounded effects of habitat heterogeneity. Here, we mapped three forest plots along a successional gradient in the montane forests of Southern Ecuador. We employed homogeneous and inhomogeneous K and pair correlation functions to quantify the change in the spatial pattern of different size classes and a case-control design to study associations between juvenile and adult tree ferns. Using spatial estimates of the biomass of four functional tree types (short- and long-lived pioneer, shade- and partial shade-tolerant) as covariates, we fitted heterogeneous Poisson models to the point pattern of juvenile and adult tree ferns and explored the existence of habitat dependencies on these patterns. Our study revealed NDD effects for C. caracasana and strong environmental filtering underlying the pattern of A. engelii. We found that adult and juvenile populations of both species responded differently to habitat heterogeneity and in most cases this heterogeneity was associated with the spatial distribution of biomass of the four functional tree types. These findings show the effectiveness of factoring out environmental heterogeneity to avoid confounding factors when studying NDD and demonstrate the usefulness of covariate maps derived from mapped communities.
Resumo:
The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary morphological traits occur among the studied woody plants of the dry Tumbesian forest. The latter favors a plethora of behavioral mechanisms to coexist among woody species of the dry forest in response to the environmental stress that is typical of arid areas.
Resumo:
We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.
Resumo:
Increasingly, large areas of native tropical forests are being transformed into a mosaic of human dominated land uses with scattered mature remnants and secondary forests. In general, at the end of the land clearing process, the landscape will have two forest components: a stable component of surviving mature forests, and a dynamic component of secondary forests of different ages. As the proportion of mature forests continues to decline, secondary forests play an increasing role in the conservation and restoration of biodiversity. This paper aims to predict and explain spatial and temporal patterns in the age of remnant mature and secondary forests in lowland Colombian landscapes. We analyse the age distributions of forest fragments, using detailed temporal land cover data derived from aerial photographs. Ordinal logistic regression analysis was applied to model the spatial dynamics of mature and secondary forest patches. In particular, the effect of soil fertility, accessibility and auto-correlated neighbourhood terms on forest age and time of isolation of remnant patches was assessed. In heavily transformed landscapes, forests account for approximately 8% of the total landscape area, of which three quarters are comprised of secondary forests. Secondary forest growth adjacent to mature forest patches increases mean patch size and core area, and therefore plays an important ecological role in maintaining landscape structure. The regression models show that forest age is positively associated with the amount of neighbouring forest, and negatively associated with the amount of neighbouring secondary vegetation, so the older the forest is the less secondary vegetation there is adjacent to it. Accessibility and soil fertility also have a negative but variable influence on the age of forest remnants. The probability of future clearing if current conditions hold is higher for regenerated than mature forests. The challenge of biodiversity conservation and restoration in dynamic and spatially heterogeneous landscape mosaics composed of mature and secondary forests is discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Tropical deforestation is the major contemporary threat to global biodiversity, because a diminishing extent of tropical forests supports the majority of the Earth's biodiversity. Forest clearing is often spatially concentrated in regions where human land use pressures, either planned or unplanned, increase the likelihood of deforestation. However, it is not a random process, but often moves in waves originating from settled areas. We investigate the spatial dynamics of land cover change in a tropical deforestation hotspot in the Colombian Amazon. We apply a forest cover zoning approach which permitted: calculation of colonization speed; comparative spatial analysis of patterns of deforestation and regeneration; analysis of spatial patterns of mature and recently regenerated forests; and the identification of local-level hotspots experiencing the fastest deforestation or regeneration. The colonization frontline moved at an average of 0.84 km yr(-1) from 1989 to 2002, resulting in the clearing of 3400 ha yr(-1) of forests beyond the 90% forest cover line. The dynamics of forest clearing varied across the colonization front according to the amount of forest in the landscape, but was spatially concentrated in well-defined 'local hotspots' of deforestation and forest regeneration. Behind the deforestation front, the transformed landscape mosaic is composed of cropping and grazing lands interspersed with mature forest fragments and patches of recently regenerated forests. We discuss the implications of the patterns of forest loss and fragmentation for biodiversity conservation within a framework of dynamic conservation planning.
Resumo:
The concentration of ammonium-nitrogen (NH4+-N) frequently exceeds that of nitrate-N (NO3--N) in Australian wet tropical sugarcane soils. The amount of mineral N in soil is the net result of complex processes in the field, so the objective of this experiment was to investigate nitrification and ammonification in these soils under laboratory conditions. Aerobic and saturated incubations were performed for 1 week on 2 wet tropical soils. Net NO3--N increased significantly in both soils during both types of incubation. A second series of aerobic incubations of these soils treated with NH4+-N and inoculated with subtropical nitrifying soils was conducted for 48 days. Nitrification in the wet tropical soils was not significantly affected by inoculation, and virtually all added N was nitrified during the incubation period. Mineral N behaviour of the 48-day incubations was captured with the APSIM-SoilN model. As nitrification proceeded under laboratory conditions and was able to be captured by the model, it was concluded that nitrification processes in the wet tropical soils studied were not different from those in the subtropical soils. Processes that remove NO3- from the soil, such as leaching and denitrification, may therefore be important factors affecting the proportions of NH4+-N and NO3--N measured under field conditions.
Resumo:
Sugarcane crop residues ('trash') have the potential to supply nitrogen (N) to crops when they are retained on the soil surface after harvest. Farmers should account for the contribution of this N to crop requirements in order to avoid over-fertilisation. In very wet tropical locations, the climate may increase the rate of trash decomposition as well as the amount of N lost from the soil-plant system due to leaching or denitrification. A field experiment was conducted on Hydrosol and Ferrosol soils in the wet tropics of northern Australia using N-15-labelled trash either applied to the soil surface or incorporated. Labelled urea fertiliser was also applied with unlabelled surface trash. The objective of the experiment was to investigate the contribution of trash to crop N nutrition in wet tropical climates, the timing of N mineralisation from trash, and the retention of trash N in contrasting soils. Less than 6% of the N in trash was recovered in the first crop and the recovery was not affected by trash incorporation. Around 6% of the N in fertiliser was also recovered in the first crop, which was less than previously measured in temperate areas (20-40%). Leaf samples taken at the end of the second crop contined 2-3% of N from trash and fertilizer applied at the beginning of the experiment. Although most N was recovered in the 0-1.5 m soil layer there was some evidence of movement of N below this depth. The results showed that trash supplies N slowly and in small amounts to the succeeding crop in wet tropics sugarcane growing areas regardless of trash placement (on the soil surface or incorporated) or soil type, and so N mineralisation from a single trash blanket is not important for sugarcane production in the wet tropics.
Resumo:
Both light quantity and quality affect the development and autoecology of plants under shade conditions, as in the understorey of tropical forests. However, little research has been directed towards the relative contributions of lowered photosynthetic photon flux density (PPFD) versus altered spectral distributions (as indicated by quantum ratios of 660 to 730 nm, or R:FR) of radiation underneath vegetation canopies. A method for constructing shade enclosures to study the contribution of these two variables is described. Three tropical leguminous vine species (Abrus precatorius L., Caesalpinia bondicela Fleming and Mucuna pruriens (L.) DC.) were grown in two shade enclosures with 3-4% of solar PPFD with either the R:FR of sunlight (1.10) or foliage shade (0.33), and compared to plants grown in sunlight. Most species treated with low R:FR differed from those treated with high R:FR in (1) percent allocation to dry leaf weight, (2) internode length, (3) dry stem weight/length, (4) specific leaf weight, (5) leaf size, and (6) chlorophyll a/b ratios. However, these plants did not differ in chlorophyll content per leaf dry weight or area. In most cases the effects of low R:FR and PPFD were additional to those of high R:FR and low PPFD. Growth patterns varied among the three species, but both low PPFD and diminished R:FR were important cues in their developmental responses to light environments. This shadehouse system should be useful in studying the effects of light on the developmental ecology of other tropical forest plants.
Resumo:
The concentration of avian song at first light (i.e., the dawn chorus) is widely appreciated but has an enigmatic functional significance. The most widely accepted explanation is that birds are active but light levels are not adequate for foraging. As a consequence, the time of first song should be predictable from the light level of individuals singing at dawn. To test this, I collected data from a tropical forest of Ecuador, involving 130 species. Light intensity at first song was a highly repeatable species' trait (r = 0.57). Foraging height was a good predictor of first song, with canopy birds singing at lower light levels than understory birds (r = -0.62). Although light level predicts the onset of singing in tropical and temperate bird communities, the structural complexity and trophic specializations in tropical forests may exert an important influence, which has been overlooked in research conducted in the temperate zone.
Resumo:
The influence of particles recycling on the geochemistry of sediments in a large tropical dam lake in the Amazonian region, Brazil. Article in Journal of South American Earth Sciences 72 · December 2016 DOI: 10.1016/j.jsames.2016.09.012 1st Rita Fonseca 16.85 · Universidade de Évora 2nd Catarina Pinho 3rd Manuela Oliveira 22.6 · Universidade de Évora Abstract As a result of over-erosion of soils, the fine particles, which contain the majority of nutrients, are easily washed away from soils, which become deficient in a host of components, accumulating in lakes. On one hand, the accumulation of nutrients-rich sediments are a problem, as they affect the quality of the overlying water and decrease the water storage capacity of the system; on the other hand, sediments may constitute an important resource, as they are often extremely rich in organic and inorganic nutrients in readily available forms. In the framework of an extensive work on the use of rock related materials to enhance the fertility of impoverish soils, this study aimed to evaluate the role on the nutrients cycle, of particles recycling processes from the watershed to the bottom of a large dam reservoir, at a wet tropical region under high weathering conditions. The study focus on the mineralogical transformations that clay particles undergo from the soils of the drainage basin to their final deposition within the reservoir and their influence in terms of the geochemical characteristics of sediments. We studied the bottom sediments that accumulate in two distinct seasonal periods in Tucuruí reservoir, located in the Amazonian Basin, Brazil, and soils from its drainage basin. The surface layers of sediments in twenty sampling points with variable depths, are representative of the different morphological sections of the reservoir. Nineteen soil samples, representing the main soil classes, were collected near the margins of the reservoir. Sediments and soils were subjected to the same array of physical, mineralogical and geochemical analyses: (1) texture, (2) characterization and semi-quantification of the clay fraction mineralogy and (3) geochemical analysis of the total concentration of major elements, organic compounds (organic C and nitrogen), soluble fractions of nutrients (P and K), exchangeable fractions (cation exchange capacity, exchangeable bases and acidity) and pH(H2O).
Resumo:
The international climate change regime has the potential to increase revenue available for forest restoration projects in Commonwealth nations. There are three mechanisms which could be used to fund forest projects aimed at forest conservation, forest restoration and sustainable forest management. The first forest funding opportunity arises under the clean development mechanism, a flexibility mechanism of the Kyoto Protocol. The clean development mechanism allows Annex I parties (industrialised nations) to invest in emission reduction activities in non-Annex 1 (developing countries) and the establishment of forest sinks is an eligible clean development mechanism activity. Secondly, parties to the Kyoto Protocol are able to include sustainable forest management activities in their national carbon accounting. The international rules concerning this are called the Land-Use, Land-Use Change and Forestry Guidelines. Thirdly, it is anticipated that at the upcoming Copenhagen negotiations that a Reduced Emissions from Deforestation and Degradation (REDD) instrument will be created. This will provide a direct funding mechanism for those developing countries with tropical forests. Payments made under a REDD arrangement will be based upon the developing country with tropical forest cover agreeing to protect and conserve a designated forest estate. These three funding options available under the international climate change regime demonstrate that there is potential for forest finance within the regime. These opportunities are however hindered by a number of technical and policy barriers which prevent the ability of the regime to significantly increase funding for forest projects. There are two types of carbon markets, compliance carbon markets (Kyoto based) and voluntary carbon markets. Voluntary carbon markets are more flexible then compliance markets and as such offer potential to increase revenue available for sustainable forest projects.
Resumo:
We provide a taxonomic redescription of the dasyurid marsupial Atherton Antechinus, Antechinus godmani (Thomas). A. godmani is only rarely encountered and limited to wet tropical rainforests of north-east Queensland, Australia, between the towns of Cardwell and Cairns (a distribution spanning 135 kilometres from north to south). The distinctive species occurs at altitudes of over 600 meters asl, in all major rainforest types, and can be found with both the northern subspecies of the Yellow-footed Antechinus, A. flavipes rubeculus Van Dyck and the Rusty Antechinus, A. adustus (Thomas). A. god-mani is clearly separated from all congeners on the basis of both morphometrics and genetics. A. godmani can be distin-guished from all extant congeners based on external morphology by a combination of large size, naked-looking tail and reddish fur on the face and head. A. godmani skulls are characteristically large, with a suite of long features: basicranium, palate, upper premolar tooth row, inter-palatal vacuity distance and dentary. Phylogenies generated from mt- and nDNA data position Antechinus godmani as monophyletic with respect to other members of the genus; A. godmani is strongly supported as the sister-group to a clade containing all other antechinus, but excluding the south-east Australian Dusky An-techinus, A. swainsonii (Waterhouse) and Swamp Antechinus, A. minimus (Geoffroy). Antechinus godmani are genetically very divergent compared to all congeners (mtDNA: range 12.9–16.3%).
Resumo:
One of the Department of Defense's most pressing environmental problems is the efficient detection and identification of unexploded ordnance (UXO). In regions of highly magnetic soils, magnetic and electromagnetic sensors often detect anomalies that are of geologic origin, adding significantly to remediation costs. In order to develop predictive models for magnetic susceptibility, it is crucial to understand modes of formation and the spatial distribution of different iron oxides. Most rock types contain iron and their magnetic susceptibility is determined by the amount and form of iron oxides present. When rocks weather, the amount and form of the oxides change, producing concomitant changes in magnetic susceptibility. The type of iron oxide found in the weathered rock or regolith is a function of the duration and intensity of weathering, as well as the original content of iron in the parent material. The rate of weathering is controlled by rainfall and temperature; thus knowing the climate zone, the amount of iron in the lithology and the age of the surface will help predict the amount and forms of iron oxide. We have compiled analyses of the types, amounts, and magnetic properties of iron oxides from soils over a wide climate range, from semi arid grasslands, to temperate regions, and tropical forests. We find there is a predictable range of iron oxide type and magnetic susceptibility according to the climate zone, the age of the soil and the amount of iron in the unweathered regolith.