937 resultados para West africa
Resumo:
Foraminifera shells from modern sediments document the hydrography of the coastal upwelling region off Northwest-Africa (12-35° N) through the stable isotopic composition of their shells. Oxygen isotopes in planktonic foraminifers reflect sea surface temperatures (SST) during the main growing season of the differnt species: Globigerinoides ruber (pink and white) and G. sacculifer delineate the temperatures of the summer, Globorotalia inflata and Pulleniatina obliquiloculata those of the winter. Oxygen isotopes on Globigerina bulloides document temperature ranges of the upwelling seasons. d18O values in planktonic foraminifera from plankton hauls resemble those from the surface sediment samples, if the time of the plankton collection is identical with that of the main growing season of the species. The combined isotopic record of G. ruber (white) and G. inflata clearly reveals the latitudinal variations of the annual mean SST. The deviation of the d18O values from both species from their common mean is a scale for the seasonality, i.e. the maximum temperature range within one year. Thus in the summer upwelling region (north of 25° N) seasonality is relatively low, while it becomes high in the winter upwelling region south of 20° N. Furthermore, the winter upwelling region is characterized by relatively high d18O values - indicating low temperatures - in G. bulloides, the region of summer upwelling by relatively low d180 values compared with the constructed annual mean SST. Generally, carbon isotopes from the plankton hauls coincide with those from sediment surface samples. The enrichment of 13C isotopes in foraminifers from areas with high primary production can be caused by the removal of 12C from the total dissolved inorganic carbon during phytoplankton blooms. It is found that carbon isotopes from plankton hauls off Northwest-Africa are relatively enriched in 13C compared with samples from the western Atlantic Ocean. Also shells of G. ruber (pink and white) from upwelling regions are enriched in the heavier isotope compared with regions without upwelling. In the sediment, the enrichement of 13C due to high primary production can only be seen in G. bulloides from the high fertile upwelling region south of 20° N. North of this latitude values are relatively low. An enrichment of 12C is observed in shells of G. ruber (pink), G. inflata and P. obliquiloculata from summer-winter- and perennial upwelling regions respectively. Northern water masses can be distinguished from their southern counterparts by relatively high oxygen and carbon values in the "living" (=stained) benthic foraminifera Uvigerina sp. and Hoeglundina elegans. A tongue of the Mediterranean Outflow water can be identified far to the south (20° N) by 13C-enriched shells of these benthic foraminifera. A zone of erosion (15-25° N, 300-600 m) with a subrecent sediment surface can be mapped with the help of oxygen isotopes in "dead" benthic specimens. Comparison of d18O values in aragonitic and calcitic benthic foraminifers does not show a differential influence of temperature on the isotopic composition in the carbonate. However, carbon isotopes reflect slightly differences under the influence of temperature.
Resumo:
On "Meteor" cruise 30 (1973) 22 piston-cores were collected off Sierra Leone from water-depths between about 5000 m (Sierra Leone Basin) and 500 m (upper continental slope) with the objective to study the sediment composition and age as well as processes of sedimentation on the continental slope in a tropical humid region. Granulometric analysis and determinations of the carbonate contents of the sediment samples were carried out, as well as qualitative and quantitative analysis of the components of the grain size fractions > 63 µm and of the planktonic and benthonic foraminifera > 160 µm. Presently, the cold Canary Current influences the composition of the planktonic foraminifera within the northwestern area of investigation (profile A), whereas the planktonic fauna of the eastern area (profile C) seems to be truly tropical. In all Quaternary sediments from the continental slope off Sierra Leone, species of Globorotalia are less abundant than in truly pelagic sediments. For that reason, the zonation of the Pleistocene sediments based on the presence or absence of Globorotalia cultrata does not always agree with the climatic changes reflected in the sediments. Concerning past climates better results can be obtained by using the changes in percentage abundances of Globigerina sp. sp. and Globigerinoides sp. sp. as indicators for cool and warm temperatures. The Tertiary sediments contain a pelagic foraminiferal assemblage. In the Holocene sediments the benthonic foraminifera do not only serve as good paleodepth indicators, but their communities are also restricted to defined water masses, which change their positions in accordance with climatic changes. Thus, Cassidulina carinata in the area of investigation is an excellent indicator for sediments deposited during times, which were cooler than today; this is true for all cores from the continental slope off Sierra Leone independent of water-depth although this species presently abounds at water-depths around 600 m. The cores from the continental rise and from the Sierra Leone Basin (M30-261, M30-146, M30-147) were deposited below the calcium carbonate compensation depth. Only small sections of the cores consist of the original carbonate-free sediments, whereas the main part of the sediment column is redeposited material, rich in foraminifera, which normally live on the upper continental slope, or even on the shelf. From these cores only M30-261 can be subdivided into biostratigraphic zones ranging from zone V to zone Y. In all cores from the middle and upper continental slope of the eastern area of investigation (profile C; KL 230, 209-204) and in cores KL 183 and KL 184 from the northwestern area (profile A) we observed an undisturbed succession of sediments from the biostratigraphic zones X (partly), Y and Z. All cores from the central area (M30-181, M30-182, M30-262 to 264) and M30-187 from the upper slope of profile A show variable hiatuses in the sedimentary record. Locally, high velocity bottom currents were probably responsible for erosion, nondeposition or minimal sedimentation rates. These currents might have been initiated partly by the somewhat exposed position of this part of the continental slope, where the shelf edge bends from a northwest towards an eastern direction, and partly by very young tectonic movements. Fracture zones with vertically displaced fault blocs are frequent at Sierra Leone continental margin. According to seismic measurements by McMaster et al. (1975) the sites of the central area are located on an uplifted fault bloc explaining the reduced sediment rates or erosion. Unlike the central area, the eastern area (profile C) is situated on a downfaulted bloc with high sediment rates. The sediments from the cores of profile B as well as the turbiditic deep-sea sediments were deposited under a higher flow regime; therefore they are coarser than the extremely fine-grained sediments of the cores from profile C. Since the sand fraction (> 63 µm) is mainly composed of foraminifera, besides pteropods and light-colored fecal pellets, the carbonate content increases with the increasing percentage of the coarse grain fraction. Higher concentrations of quartz were only observed in core sections with considerable carbonate dissolution (mainly in the X-Zone), and, in general, in all sediments from the eastern area with higher terrigenous input including larger concentration of mica. Especially during times transitional between glacials and interglacials (or interstadials) the bottom currents were intensified. The percentages of coarse fraction and carbonate increase with increasing current velocities. Calcium carbonate dissolution becomes important in water depths > 3500 m. During cooler times the lysokline is depressed. Light-colored fecal pellets were redeposited from Late Neogene sediments (M30-187, M30-181). In the area of investigation they occur in the Holocene and mainly the Pleistocene sediments of the cores from the northwestern and central area because only here Tertiary sediments have been eroded at the uppermost continental slope. In the central area there are at least two periods of non-sedimentation and/or erosion which can be confined as being (1) not older than middle Pliocene and not younger than zone V and (2) younger than zone W. The local character of the erosion is documented by the fact that a complete Late Quaternary section is present in the cores of the northwestern and eastern area, each within less than 100 km from incomplete cores from the central area.
Resumo:
Surface sediments from 5 profiles between 30 and 3000 m water depth off W Africa (12-19° N) have been studied for their sand fraction composition and their total calcium carbonate and organic matter contents to evaluate the effect of climatic and hydrographic factors on actual sedimentation. On the shelf and upper slope (< 500 m), currents prevent the deposition of significant amounts of fine-grained material. The sediments forming here are characterized by high sand contents (> 60 %; in most samples > 89 %), low organic carbon contents (in most samples < 0.8 %), high median diameters of the sand fraction (120-500 µm), and by a predominance of quartz and biogenic relict shells (most abundant: molluscs and bryozoans) in the sand fraction. Median diameters of total sand fraction and of major biogenic sand fraction components (biogenic relict material, benthonic molluscs, benthonic and planktonic foraminifers) co-vary to some extent and show maximum values in 100-300 m water depth, reflectingthe sorting effect of currents (perhaps the northward flowing undercurrent). In this water depth, biogenic relict material is considerably enriched relative to wuartz, the second dominating sand fraction component on the shelf and upper slope, resulting in distinct calcium carbonate maxima of the bulk sediments. The influence of the undercurrent is also reflected in a northward transport of fine grained river load and perhaps in the distribution of the red stained, coarse silt and sand-size clay aggregates, which show maxima in 300-500 m water depth. They probably originate from tropical soils. Abundant coarse red-stained quartz on the shelf off Cape Roxo (12-130° N) suggests a southward extension of last glacial dune fields to this latitude. Below about 500 m water depth, current influence becomes negligible - as indicated by a strong decrease in sand content, a concomitant increase in sedimentary organic carbon contents (up to 2.5-3.5 %), and the occurence of high mica/quartz ratios in the sand fraction. Downslope transport, presumably due to the bioturbation mechanism, is indicated by the presence of coarse shelf-borne particles (glauconite, relict shells) down to about 1000 m water depth. The fine/coarse ratio (clay + silt/sand) of the sediments from water deoth > 500 m never exceed a value of 11 in northern latitudes (19° - 26° N), but shows distinct maxima, ranging from 50 to 120, at latitudes 18°, 17° 15°30', and 14° N in about 2000 m water depth. This distribution is attributed to the deposition of fine-grained river load at the continental slope between 18° and 14° N, brought into the sea by the Senegal and souther rivers and transported northward ny the undercurrent. Strong calcium carbonate dissolution is indicated by the complete disappearance of pteropodes (aragonite) and high fragmentation of the planktoic foraminifers (calcite) in sediments from water depth > 300-600 m. Fragmentation ratios of planktonic foraminifers were found to depend on the organic carbon/carbonate ratios of the sediment suggesting that calcite dissolution at the sea bottom may also be significant in shelf and continental slope water depths if the organic matter/carbonate ratio of the surface sediment is high and the test remain long enough within the oxidizing layer on the top of the sulfate reduction zone. The fact that in the region under study intensity and anual duration of upwelling decrease from north to south is neither reflected in the composition on the sand fraction (i.e. radiolarian and fish debris contents, radiolarian/planktonic foraminiferal ratios, benthos/plankton ratios of foraminifers), nor in the sedimentary organic carbon distribution. On the contrary, these parameters even show in comparable water depths a tendency for highest values in the south, partly because primary production rates remain high in the whole region, particularly on the shelf, due to the nutrient input by rivers in the south. In addition, several hydrographic, sedimentological and climatic factors severely affect their distribution - for example currents, dissolution, grain size composition, deposition of river load, and bulk sedimentation rats.
SYNOPS: Synoptical observations from meteorological stations of West Africa, with links to data sets
Resumo:
An organic-walled dinoflagellate cyst analysis was carried out on 53 surface sediment samples from West Africa (17-6°N) to obtain insight in the relationship between their spatial distribution and hydrological conditions in the upper water column as well as marine productivity in the study area. Multivariate analysis of the dinoflagellate cyst relative abundances and environmental parameters of the water column shows that sea-surface temperature, salinity, marine productivity and bottom water oxygen are the factors that relate significantly to the distribution patterns of individual species in the region. The composition of cyst assemblages and dinoflagellate cyst concentrations allows the identification of four hydrographic regimes; 1) the northern regime between 17 and 14°N characterized by high productivity associated with seasonal coastal upwelling, 2) the southern regime between 12 and 6°N associated with high-nutrient waters influenced by river discharge 3) the intermediate regime between 14 and 12°N influenced mainly by seasonal coastal upwelling additionally associated with fluvial input of terrestrial nutrients and 4) the offshore regime characterized by low chlorophyll-a concentrations in upper waters and high bottom water oxygen concentrations. Our data show that cysts of Polykrikos kofoidii, Selenopemphix quanta, Dubridinium spp., Echinidinium species, cysts of Protoperidinium monospinum and Spiniferites pachydermus are the best proxies to reconstruct the boundary between the NE trade winds and the monsoon winds in the subtropical eastern Atlantic Ocean. The association of Bitectatodinium spongium, Lejeunecysta oliva, Quinquecuspis concreta, Selenopemphix nephroides, Trinovantedinium applanatum can be used to reconstruct past river outflow variations within this region.
Resumo:
The benthic foraminiferal populations along three traverses across the Northwest African continental margin were analyzed on the base of ca. 60 surface sediment samples. Depth ranges of 213 species were established and the main trends of vertical distribution are compared with those known from adjacent regions. Main faunal breaks occure at 100/200 m and 1000/1500 m depth of water. Some species show latitudinal distribution boundaries and the same applies to population density (standing stock), reflecting the regional distribution of nutrients supply by river discharge and upwelling processes. - High proportions of Bolivina test at the lower slope indicate extended downslope transport.