968 resultados para Weibull Probability Plot
Resumo:
In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.
Resumo:
We found that lumbar spine texture analysis using trabecular bone score (TBS) is a risk factor for MOF and a risk factor for death in a retrospective cohort study from a large clinical registry for the province of Manitoba, Canada. INTRODUCTION: FRAX® estimates the 10-year probability of major osteoporotic fracture (MOF) using clinical risk factors and femoral neck bone mineral density (BMD). Trabecular bone score (TBS), derived from texture in the spine dual X-ray absorptiometry (DXA) image, is related to bone microarchitecture and fracture risk independently of BMD. Our objective was to determine whether TBS provides information on MOF probability beyond that provided by the FRAX variables. METHODS: We included 33,352 women aged 40-100 years (mean 63 years) with baseline DXA measurements of lumbar spine TBS and femoral neck BMD. The association between TBS, the FRAX variables, and the risk of MOF or death was examined using an extension of the Poisson regression model. RESULTS: During the mean of 4.7 years, 1,754 women died and 1,872 sustained one or more MOF. For each standard deviation reduction in TBS, there was a 36 % increase in MOF risk (HR 1.36, 95 % CI 1.30-1.42, p < 0.001) and a 32 % increase in death (HR 1.32, 95 % CI 1.26-1.39, p < 0.001). When adjusted for significant clinical risk factors and femoral neck BMD, lumbar spine TBS was still a significant predictor of MOF (HR 1.18, 95 % CI 1.12-1.23) and death (HR 1.20, 95 % CI 1.14-1.26). Models for estimating MOF probability, accounting for competing mortality, showed that low TBS (10th percentile) increased risk by 1.5-1.6-fold compared with high TBS (90th percentile) across a broad range of ages and femoral neck T-scores. CONCLUSIONS: Lumbar spine TBS is able to predict incident MOF independent of FRAX clinical risk factors and femoral neck BMD even after accounting for the increased death hazard.
Resumo:
The Hardy-Weinberg law, formulated about 100 years ago, states that under certainassumptions, the three genotypes AA, AB and BB at a bi-allelic locus are expected to occur inthe proportions p2, 2pq, and q2 respectively, where p is the allele frequency of A, and q = 1-p.There are many statistical tests being used to check whether empirical marker data obeys theHardy-Weinberg principle. Among these are the classical xi-square test (with or withoutcontinuity correction), the likelihood ratio test, Fisher's Exact test, and exact tests in combinationwith Monte Carlo and Markov Chain algorithms. Tests for Hardy-Weinberg equilibrium (HWE)are numerical in nature, requiring the computation of a test statistic and a p-value.There is however, ample space for the use of graphics in HWE tests, in particular for the ternaryplot. Nowadays, many genetical studies are using genetical markers known as SingleNucleotide Polymorphisms (SNPs). SNP data comes in the form of counts, but from the countsone typically computes genotype frequencies and allele frequencies. These frequencies satisfythe unit-sum constraint, and their analysis therefore falls within the realm of compositional dataanalysis (Aitchison, 1986). SNPs are usually bi-allelic, which implies that the genotypefrequencies can be adequately represented in a ternary plot. Compositions that are in exactHWE describe a parabola in the ternary plot. Compositions for which HWE cannot be rejected ina statistical test are typically “close" to the parabola, whereas compositions that differsignificantly from HWE are “far". By rewriting the statistics used to test for HWE in terms ofheterozygote frequencies, acceptance regions for HWE can be obtained that can be depicted inthe ternary plot. This way, compositions can be tested for HWE purely on the basis of theirposition in the ternary plot (Graffelman & Morales, 2008). This leads to nice graphicalrepresentations where large numbers of SNPs can be tested for HWE in a single graph. Severalexamples of graphical tests for HWE (implemented in R software), will be shown, using SNPdata from different human populations
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densitiesby generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
In this paper, we define a new scheme to develop and evaluate protection strategies for building reliable GMPLS networks. This is based on what we have called the network protection degree (NPD). The NPD consists of an a priori evaluation, the failure sensibility degree (FSD), which provides the failure probability, and an a posteriori evaluation, the failure impact degree (FID), which determines the impact on the network in case of failure, in terms of packet loss and recovery time. Having mathematical formulated these components, experimental results demonstrate the benefits of the utilization of the NPD, when used to enhance some current QoS routing algorithms in order to offer a certain degree of protection
Resumo:
In networks with small buffers, such as optical packet switching based networks, the convolution approach is presented as one of the most accurate method used for the connection admission control. Admission control and resource management have been addressed in other works oriented to bursty traffic and ATM. This paper focuses on heterogeneous traffic in OPS based networks. Using heterogeneous traffic and bufferless networks the enhanced convolution approach is a good solution. However, both methods (CA and ECA) present a high computational cost for high number of connections. Two new mechanisms (UMCA and ISCA) based on Monte Carlo method are proposed to overcome this drawback. Simulation results show that our proposals achieve lower computational cost compared to enhanced convolution approach with an small stochastic error in the probability estimation
Resumo:
Power law distributions, a well-known model in the theory of real random variables, characterize a wide variety of natural and man made phenomena. The intensity of earthquakes, the word frequencies, the solar ares and the sizes of power outages are distributed according to a power law distribution. Recently, given the usage of power laws in the scientific community, several articles have been published criticizing the statistical methods used to estimate the power law behaviour and establishing new techniques to their estimation with proven reliability. The main object of the present study is to go in deep understanding of this kind of distribution and its analysis, and introduce the half-lives of the radioactive isotopes as a new candidate in the nature following a power law distribution, as well as a \canonical laboratory" to test statistical methods appropriate for long-tailed distributions.
Resumo:
This paper presents and discusses further aspects of the subjectivist interpretation of probability (also known as the 'personalist' view of probabilities) as initiated in earlier forensic and legal literature. It shows that operational devices to elicit subjective probabilities - in particular the so-called scoring rules - provide additional arguments in support of the standpoint according to which categorical claims of forensic individualisation do not follow from a formal analysis under that view of probability theory.
Resumo:
Exact closed-form expressions are obtained for the outage probability of maximal ratio combining in η-μ fadingchannels with antenna correlation and co-channel interference. The scenario considered in this work assumes the joint presence of background white Gaussian noise and independent Rayleigh-faded interferers with arbitrary powers. Outage probability results are obtained through an appropriate generalization of the moment-generating function of theη-μ fading distribution, for which new closed-form expressions are provided.
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Centralnotations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform.In this way very elaborated aspects of mathematical statistics can be understoodeasily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating,combination of likelihood and robust M-estimation functions are simple additions/perturbations in A2(Pprior). Weighting observations corresponds to a weightedaddition of the corresponding evidence.Likelihood based statistics for general exponential families turns out to have aparticularly easy interpretation in terms of A2(P). Regular exponential families formfinite dimensional linear subspaces of A2(P) and they correspond to finite dimensionalsubspaces formed by their posterior in the dual information space A2(Pprior).The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P.The discussion of A2(P) valued random variables, such as estimation functionsor likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
We propose a new econometric estimation method for analyzing the probabilityof leaving unemployment using uncompleted spells from repeated cross-sectiondata, which can be especially useful when panel data are not available. Theproposed method-of-moments-based estimator has two important features:(1) it estimates the exit probability at the individual level and(2) it does not rely on the stationarity assumption of the inflowcomposition. We illustrate and gauge the performance of the proposedestimator using the Spanish Labor Force Survey data, and analyze the changesin distribution of unemployment between the 1980s and 1990s during a periodof labor market reform. We find that the relative probability of leavingunemployment of the short-term unemployed versus the long-term unemployedbecomes significantly higher in the 1990s.
Resumo:
The economic literature on crime and punishment focuses on the trade-off between probability and severity of punishment, and suggests that detection probability and fines are substitutes. In this paper it is shown that, in presence of substantial underdeterrence caused by costly detection and punishment, these instruments may become complements. When offenders are poor, the deterrent value of monetary sanctions is low. Thus, the government does not invest a lot in detection. If offenders are rich, however, the deterrent value of monetary sanctions is high, so it is more profitable to prosecute them.
Resumo:
Nestling birds produced later in the season are hypothesized to be of poor quality with a low probability of survival and recruitment. In a Spanish population of house martins (Delichon urbica), we first compared reproductive success, immune responses and morphological traits between the first and the second broods. Second, we investigated the effects of an ectoparasite treatment and breeding date on the recapture rate the following year. Due probably to a reverse situation in weather conditions during the experiment, with more rain during rearing of the first brood, nestlings reared during the second brood were in better condition and had stronger immune responses compared with nestlings from the first brood. Contrary to other findings on house martins, we found a similar recapture rate for chicks reared during the first and the second brood. Furthermore, ectoparasitic house martin bugs had no significant effect on the recapture rate. Recaptured birds had similar morphology but higher immunoglobulin levels when nestlings compared with non-recaptured birds. This result implies that a measure of immune function is a better predictor of survival than body condition per se.