967 resultados para Web Mining


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il problema relativo alla predizione, la ricerca di pattern predittivi all‘interno dei dati, è stato studiato ampiamente. Molte metodologie robuste ed efficienti sono state sviluppate, procedimenti che si basano sull‘analisi di informazioni numeriche strutturate. Quella testuale, d‘altro canto, è una tipologia di informazione fortemente destrutturata. Quindi, una immediata conclusione, porterebbe a pensare che per l‘analisi predittiva su dati testuali sia necessario sviluppare metodi completamente diversi da quelli ben noti dalle tecniche di data mining. Un problema di predizione può essere risolto utilizzando invece gli stessi metodi : dati testuali e documenti possono essere trasformati in valori numerici, considerando per esempio l‘assenza o la presenza di termini, rendendo di fatto possibile una utilizzazione efficiente delle tecniche già sviluppate. Il text mining abilita la congiunzione di concetti da campi di applicazione estremamente eterogenei. Con l‘immensa quantità di dati testuali presenti, basti pensare, sul World Wide Web, ed in continua crescita a causa dell‘utilizzo pervasivo di smartphones e computers, i campi di applicazione delle analisi di tipo testuale divengono innumerevoli. L‘avvento e la diffusione dei social networks e della pratica di micro blogging abilita le persone alla condivisione di opinioni e stati d‘animo, creando un corpus testuale di dimensioni incalcolabili aggiornato giornalmente. Le nuove tecniche di Sentiment Analysis, o Opinion Mining, si occupano di analizzare lo stato emotivo o la tipologia di opinione espressa all‘interno di un documento testuale. Esse sono discipline attraverso le quali, per esempio, estrarre indicatori dello stato d‘animo di un individuo, oppure di un insieme di individui, creando una rappresentazione dello stato emotivo sociale. L‘andamento dello stato emotivo sociale può condizionare macroscopicamente l‘evolvere di eventi globali? Studi in campo di Economia e Finanza Comportamentale assicurano un legame fra stato emotivo, capacità nel prendere decisioni ed indicatori economici. Grazie alle tecniche disponibili ed alla mole di dati testuali continuamente aggiornati riguardanti lo stato d‘animo di milioni di individui diviene possibile analizzare tali correlazioni. In questo studio viene costruito un sistema per la previsione delle variazioni di indici di borsa, basandosi su dati testuali estratti dalla piattaforma di microblogging Twitter, sotto forma di tweets pubblici; tale sistema include tecniche di miglioramento della previsione basate sullo studio di similarità dei testi, categorizzandone il contributo effettivo alla previsione.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ogni giorno enormi quantità di dati sono prodotti come record dettagliati del comportamento di utilizzo del Web, ma l'obiettivo di trarne conoscenza rimane ancora una sfida. In questa trattazione viene descritto EOP(Eye-On-Portal), un framework di monitoring che si propone come strumento per riuscire a catturare informazioni dettagliate sulle componenti della pagina visitata dall'utente e sulle interazioni di quest'ultimo con il portale: i dati raccolti potrebbero avere utilità nell'ottimizzazione del layout e nell'usabilità del portale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Negli ultimi anni i documenti web hanno attratto molta attenzione, poiché vengono visti come un nuovo mezzo che porta quello che sono le esperienze ed opinioni di un individuo da una parte all'altra del mondo, raggiungendo quindi persone che mai si incontreranno. Ed è proprio con la proliferazione del Web 2.0 che l’attenzione è stata incentrata sul contenuto generato dagli utenti della rete, i quali hanno a disposizione diverse piattaforme sulle quali condividere i loro pensieri, opinioni o andare a cercarne di altrui, magari per valutare l’acquisto di uno smartphone piuttosto che un altro o se valutare l’opzione di cambiare operatore telefonico, ponderando quali potrebbero essere gli svantaggi o i vantaggi che otterrebbe modificando la sia situazione attuale. Questa grande disponibilità di informazioni è molto preziosa per i singoli individui e le organizzazioni, che devono però scontrarsi con la grande difficoltà di trovare le fonti di tali opinioni, estrapolarle ed esprimerle in un formato standard. Queste operazioni risulterebbero quasi impossibili da eseguire a mano, per questo è nato il bisogno di automatizzare tali procedimenti, e la Sentiment Analysis è la risposta a questi bisogni. Sentiment analysis (o Opinion Mining, come è chiamata a volte) è uno dei tanti campi di studio computazionali che affronta il tema dell’elaborazione del linguaggio naturale orientato all'estrapolazione delle opinioni. Negli ultimi anni si è rilevato essere uno dei nuovi campi di tendenza nel settore dei social media, con una serie di applicazioni nel campo economico, politico e sociale. Questa tesi ha come obiettivo quello di fornire uno sguardo su quello che è lo stato di questo campo di studio, con presentazione di metodi e tecniche e di applicazioni di esse in alcuni studi eseguiti in questi anni.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the paper we report on the results of our experiments on the construction of the opinion ontology. Our aim is to show the benefits of publishing in the open, on the Web, the results of the opinion mining process in a structured form. On the road to achieving this, we attempt to answer the research question to what extent opinion information can be formalized in a unified way. Furthermore, as part of the evaluation, we experiment with the usage of Semantic Web technologies and show particular use cases that support our claims.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twelve years ago a group of teachers began to work in educational innovation. In 2002 we received an award for educational innovation, undergoing several stages. Recently, we have decided to focus on being teachers of educational innovation. We create a web scheduled in Joomla offering various services, among which we emphasize teaching courses of educational innovation. The “Instituto de Ciencias de la Educacion” in “Universidad Politécnica de Madrid” has recently incorporated two of these courses, which has been highly praised. These courses will be reissued in new calls, and we are going to offer them to more Universities. We are in contact with several institutions, radio programs, the UNESCO Chair of Mining and Industrial Heritage, and we are working with them in the creation of heritage courses using methods that we have developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this position paper, we claim that the need for time consuming data preparation and result interpretation tasks in knowledge discovery, as well as for costly expert consultation and consensus building activities required for ontology building can be reduced through exploiting the interplay of data mining and ontology engineering. The aim is to obtain in a semi-automatic way new knowledge from distributed data sources that can be used for inference and reasoning, as well as to guide the extraction of further knowledge from these data sources. The proposed approach is based on the creation of a novel knowledge discovery method relying on the combination, through an iterative ?feedbackloop?, of (a) data mining techniques to make emerge implicit models from data and (b) pattern-based ontology engineering to capture these models in reusable, conceptual and inferable artefacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La nanotecnología es un área de investigación de reciente creación que trata con la manipulación y el control de la materia con dimensiones comprendidas entre 1 y 100 nanómetros. A escala nanométrica, los materiales exhiben fenómenos físicos, químicos y biológicos singulares, muy distintos a los que manifiestan a escala convencional. En medicina, los compuestos miniaturizados a nanoescala y los materiales nanoestructurados ofrecen una mayor eficacia con respecto a las formulaciones químicas tradicionales, así como una mejora en la focalización del medicamento hacia la diana terapéutica, revelando así nuevas propiedades diagnósticas y terapéuticas. A su vez, la complejidad de la información a nivel nano es mucho mayor que en los niveles biológicos convencionales (desde el nivel de población hasta el nivel de célula) y, por tanto, cualquier flujo de trabajo en nanomedicina requiere, de forma inherente, estrategias de gestión de información avanzadas. Desafortunadamente, la informática biomédica todavía no ha proporcionado el marco de trabajo que permita lidiar con estos retos de la información a nivel nano, ni ha adaptado sus métodos y herramientas a este nuevo campo de investigación. En este contexto, la nueva área de la nanoinformática pretende detectar y establecer los vínculos existentes entre la medicina, la nanotecnología y la informática, fomentando así la aplicación de métodos computacionales para resolver las cuestiones y problemas que surgen con la información en la amplia intersección entre la biomedicina y la nanotecnología. Las observaciones expuestas previamente determinan el contexto de esta tesis doctoral, la cual se centra en analizar el dominio de la nanomedicina en profundidad, así como en el desarrollo de estrategias y herramientas para establecer correspondencias entre las distintas disciplinas, fuentes de datos, recursos computacionales y técnicas orientadas a la extracción de información y la minería de textos, con el objetivo final de hacer uso de los datos nanomédicos disponibles. El autor analiza, a través de casos reales, alguna de las tareas de investigación en nanomedicina que requieren o que pueden beneficiarse del uso de métodos y herramientas nanoinformáticas, ilustrando de esta forma los inconvenientes y limitaciones actuales de los enfoques de informática biomédica a la hora de tratar con datos pertenecientes al dominio nanomédico. Se discuten tres escenarios diferentes como ejemplos de actividades que los investigadores realizan mientras llevan a cabo su investigación, comparando los contextos biomédico y nanomédico: i) búsqueda en la Web de fuentes de datos y recursos computacionales que den soporte a su investigación; ii) búsqueda en la literatura científica de resultados experimentales y publicaciones relacionadas con su investigación; iii) búsqueda en registros de ensayos clínicos de resultados clínicos relacionados con su investigación. El desarrollo de estas actividades requiere el uso de herramientas y servicios informáticos, como exploradores Web, bases de datos de referencias bibliográficas indexando la literatura biomédica y registros online de ensayos clínicos, respectivamente. Para cada escenario, este documento proporciona un análisis detallado de los posibles obstáculos que pueden dificultar el desarrollo y el resultado de las diferentes tareas de investigación en cada uno de los dos campos citados (biomedicina y nanomedicina), poniendo especial énfasis en los retos existentes en la investigación nanomédica, campo en el que se han detectado las mayores dificultades. El autor ilustra cómo la aplicación de metodologías provenientes de la informática biomédica a estos escenarios resulta efectiva en el dominio biomédico, mientras que dichas metodologías presentan serias limitaciones cuando son aplicadas al contexto nanomédico. Para abordar dichas limitaciones, el autor propone un enfoque nanoinformático, original, diseñado específicamente para tratar con las características especiales que la información presenta a nivel nano. El enfoque consiste en un análisis en profundidad de la literatura científica y de los registros de ensayos clínicos disponibles para extraer información relevante sobre experimentos y resultados en nanomedicina —patrones textuales, vocabulario en común, descriptores de experimentos, parámetros de caracterización, etc.—, seguido del desarrollo de mecanismos para estructurar y analizar dicha información automáticamente. Este análisis concluye con la generación de un modelo de datos de referencia (gold standard) —un conjunto de datos de entrenamiento y de test anotados manualmente—, el cual ha sido aplicado a la clasificación de registros de ensayos clínicos, permitiendo distinguir automáticamente los estudios centrados en nanodrogas y nanodispositivos de aquellos enfocados a testear productos farmacéuticos tradicionales. El presente trabajo pretende proporcionar los métodos necesarios para organizar, depurar, filtrar y validar parte de los datos nanomédicos existentes en la actualidad a una escala adecuada para la toma de decisiones. Análisis similares para otras tareas de investigación en nanomedicina ayudarían a detectar qué recursos nanoinformáticos se requieren para cumplir los objetivos actuales en el área, así como a generar conjunto de datos de referencia, estructurados y densos en información, a partir de literatura y otros fuentes no estructuradas para poder aplicar nuevos algoritmos e inferir nueva información de valor para la investigación en nanomedicina. ABSTRACT Nanotechnology is a research area of recent development that deals with the manipulation and control of matter with dimensions ranging from 1 to 100 nanometers. At the nanoscale, materials exhibit singular physical, chemical and biological phenomena, very different from those manifested at the conventional scale. In medicine, nanosized compounds and nanostructured materials offer improved drug targeting and efficacy with respect to traditional formulations, and reveal novel diagnostic and therapeutic properties. Nevertheless, the complexity of information at the nano level is much higher than the complexity at the conventional biological levels (from populations to the cell). Thus, any nanomedical research workflow inherently demands advanced information management. Unfortunately, Biomedical Informatics (BMI) has not yet provided the necessary framework to deal with such information challenges, nor adapted its methods and tools to the new research field. In this context, the novel area of nanoinformatics aims to build new bridges between medicine, nanotechnology and informatics, allowing the application of computational methods to solve informational issues at the wide intersection between biomedicine and nanotechnology. The above observations determine the context of this doctoral dissertation, which is focused on analyzing the nanomedical domain in-depth, and developing nanoinformatics strategies and tools to map across disciplines, data sources, computational resources, and information extraction and text mining techniques, for leveraging available nanomedical data. The author analyzes, through real-life case studies, some research tasks in nanomedicine that would require or could benefit from the use of nanoinformatics methods and tools, illustrating present drawbacks and limitations of BMI approaches to deal with data belonging to the nanomedical domain. Three different scenarios, comparing both the biomedical and nanomedical contexts, are discussed as examples of activities that researchers would perform while conducting their research: i) searching over the Web for data sources and computational resources supporting their research; ii) searching the literature for experimental results and publications related to their research, and iii) searching clinical trial registries for clinical results related to their research. The development of these activities will depend on the use of informatics tools and services, such as web browsers, databases of citations and abstracts indexing the biomedical literature, and web-based clinical trial registries, respectively. For each scenario, this document provides a detailed analysis of the potential information barriers that could hamper the successful development of the different research tasks in both fields (biomedicine and nanomedicine), emphasizing the existing challenges for nanomedical research —where the major barriers have been found. The author illustrates how the application of BMI methodologies to these scenarios can be proven successful in the biomedical domain, whilst these methodologies present severe limitations when applied to the nanomedical context. To address such limitations, the author proposes an original nanoinformatics approach specifically designed to deal with the special characteristics of information at the nano level. This approach consists of an in-depth analysis of the scientific literature and available clinical trial registries to extract relevant information about experiments and results in nanomedicine —textual patterns, common vocabulary, experiment descriptors, characterization parameters, etc.—, followed by the development of mechanisms to automatically structure and analyze this information. This analysis resulted in the generation of a gold standard —a manually annotated training or reference set—, which was applied to the automatic classification of clinical trial summaries, distinguishing studies focused on nanodrugs and nanodevices from those aimed at testing traditional pharmaceuticals. The present work aims to provide the necessary methods for organizing, curating and validating existing nanomedical data on a scale suitable for decision-making. Similar analysis for different nanomedical research tasks would help to detect which nanoinformatics resources are required to meet current goals in the field, as well as to generate densely populated and machine-interpretable reference datasets from the literature and other unstructured sources for further testing novel algorithms and inferring new valuable information for nanomedicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mobile apps market is a tremendous success, with millions of apps downloaded and used every day by users spread all around the world. For apps’ developers, having their apps published on one of the major app stores (e.g. Google Play market) is just the beginning of the apps lifecycle. Indeed, in order to successfully compete with the other apps in the market, an app has to be updated frequently by adding new attractive features and by fixing existing bugs. Clearly, any developer interested in increasing the success of her app should try to implement features desired by the app’s users and to fix bugs affecting the user experience of many of them. A precious source of information to decide how to collect users’ opinions and wishes is represented by the reviews left by users on the store from which they downloaded the app. However, to exploit such information the app’s developer should manually read each user review and verify if it contains useful information (e.g. suggestions for new features). This is something not doable if the app receives hundreds of reviews per day, as happens for the very popular apps on the market. In this work, our aim is to provide support to mobile apps developers by proposing a novel approach exploiting data mining, natural language processing, machine learning, and clustering techniques in order to classify the user reviews on the basis of the information they contain (e.g. useless, suggestion for new features, bugs reporting). Such an approach has been empirically evaluated and made available in a web-­‐based tool publicly available to all apps’ developers. The achieved results showed that the developed tool: (i) is able to correctly categorise user reviews on the basis of their content (e.g. isolating those reporting bugs) with 78% of accuracy, (ii) produces clusters of reviews (e.g. groups together reviews indicating exactly the same bug to be fixed) that are meaningful from a developer’s point-­‐of-­‐view, and (iii) is considered useful by a software company working in the mobile apps’ development market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is the result of a project whose objective has been to develop and deploy a dashboard for sentiment analysis of football in Twitter based on web components and D3.js. To do so, a visualisation server has been developed in order to present the data obtained from Twitter and analysed with Senpy. This visualisation server has been developed with Polymer web components and D3.js. Data mining has been done with a pipeline between Twitter, Senpy and ElasticSearch. Luigi have been used in this process because helps building complex pipelines of batch jobs, so it has analysed all tweets and stored them in ElasticSearch. To continue, D3.js has been used to create interactive widgets that make data easily accessible, this widgets will allow the user to interact with them and �filter the most interesting data for him. Polymer web components have been used to make this dashboard according to Google's material design and be able to show dynamic data in widgets. As a result, this project will allow an extensive analysis of the social network, pointing out the influence of players and teams and the emotions and sentiments that emerge in a lapse of time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En esta memoria se presenta el diseño y desarrollo de una aplicación en la nube destinada a la compartición de objetos y servicios. El desarrollo de esta aplicación surge dentro del proyecto de I+D+i, SITAC: Social Internet of Things – Apps by and for the Crowd ITEA 2 11020, que trata de crear una arquitectura integradora y un “ecosistema” que incluya plataformas, herramientas y metodologías para facilitar la conexión y cooperación de entidades de distinto tipo conectadas a la red bien sean sistemas, máquinas, dispositivos o personas con dispositivos móviles personales como tabletas o teléfonos móviles. El proyecto innovará mediante la utilización de un modelo inspirado en las redes sociales para facilitar y unificar las interacciones tanto entre personas como entre personas y dispositivos. En este contexto surge la necesidad de desarrollar una aplicación destinada a la compartición de recursos en la nube que pueden ser tanto lógicos como físicos, y que esté orientada al big data. Ésta será la aplicación presentada en este trabajo, el “Resource Sharing Center”, que ofrece un servicio web para el intercambio y compartición de contenido, y un motor de recomendaciones basado en las preferencias de los usuarios. Con este objetivo, se han usado tecnologías de despliegue en la nube, como Elastic Beanstalk (el PaaS de Amazon Web Services), S3 (el sistema de almacenamiento de Amazon Web Services), SimpleDB (base de datos NoSQL) y HTML5 con JavaScript y Twitter Bootstrap para el desarrollo del front-end, siendo Python y Node.js las tecnologías usadas en el back end, y habiendo contribuido a la mejora de herramientas de clustering sobre big data. Por último, y de cara a realizar el estudio sobre las pruebas de carga de la aplicación se ha usado la herramienta ApacheJMeter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation introduces an approach to generate tests to test fail-safe behavior for web applications. We apply the approach to a commercial web application. We build models for both behavioral and mitigation requirements. We create mitigation tests from an existing functional black box test suite by determining failure type and points of failure in the test suite and weaving required mitigation based on weaving rules to generate a test suite that tests proper mitigation of failures. A genetic algorithm (GA) is used to determine points of failure and type of failure that needs to be tested. Mitigation test paths are woven into the behavioral test at the point of failure based on failure specific weaving rules. A simulator was developed to evaluate choice of parameters for the genetic algorithm. We showed how to tune the fitness function and performed tuning experiments for GA to determine what values to use for exploration weight and prospecting weight. We found that higher defect densities make prospecting and mining more successful, while lower mitigation defect densities need more exploration. We compare efficiency and effectiveness of the approach. First, the GA approach is compared to random selection. The results show that the GA performance was better than random selection and that the approach was robust when the search space increased. Second, we compare the GA against four coverage criteria. The results of comparison show that test requirements generated by a genetic algorithm (GA) are more efficient than three of the four coverage criteria for large search spaces. They are equally effective. For small search spaces, the genetic algorithm is less effective than three of the four coverage criteria. The fourth coverage criteria is too weak and unable to find all defects in almost all cases. We also present a large case study of a mortgage system at one of our industrial partners and show how we formalize the approach. We evaluate the use of a GA to create test requirements. The evaluation includes choice of initial population, multiplicity of runs and a discussion of the cost of evaluating fitness. Finally, we build a selective regression testing approach based on types of changes (add, delete, or modify) that could occur in the behavioral model, the fault model, the mitigation models, the weaving rules, and the state-event matrix. We provide a systematic method by showing the formalization steps for each type of change to the various models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tesis doctoral con mención europea en procesamiento del lenguaje natural realizada en la Universidad de Alicante por Ester Boldrini bajo la dirección del Dr. Patricio Martínez-Barco. El acto de defensa de la tesis tuvo lugar en la Universidad de Alicante el 23 de enero de 2012 ante el tribunal formado por los doctores Manuel Palomar (Universidad de Alicante), Dr. Paloma Moreda (UA), Dr. Mariona Taulé (Universidad de Barcelona), Dr. Horacio Saggion (Universitat Pompeu Fabra) y Dr. Mike Thelwall (University of Wolverhampton). Calificación: Sobresaliente Cum Laude por unanimidad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exponential increase of subjective, user-generated content since the birth of the Social Web, has led to the necessity of developing automatic text processing systems able to extract, process and present relevant knowledge. In this paper, we tackle the Opinion Retrieval, Mining and Summarization task, by proposing a unified framework, composed of three crucial components (information retrieval, opinion mining and text summarization) that allow the retrieval, classification and summarization of subjective information. An extensive analysis is conducted, where different configurations of the framework are suggested and analyzed, in order to determine which is the best one, and under which conditions. The evaluation carried out and the results obtained show the appropriateness of the individual components, as well as the framework as a whole. By achieving an improvement over 10% compared to the state-of-the-art approaches in the context of blogs, we can conclude that subjective text can be efficiently dealt with by means of our proposed framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Citizens demand more and more data for making decisions in their daily life. Therefore, mechanisms that allow citizens to understand and analyze linked open data (LOD) in a user-friendly manner are highly required. To this aim, the concept of Open Business Intelligence (OpenBI) is introduced in this position paper. OpenBI facilitates non-expert users to (i) analyze and visualize LOD, thus generating actionable information by means of reporting, OLAP analysis, dashboards or data mining; and to (ii) share the new acquired information as LOD to be reused by anyone. One of the most challenging issues of OpenBI is related to data mining, since non-experts (as citizens) need guidance during preprocessing and application of mining algorithms due to the complexity of the mining process and the low quality of the data sources. This is even worst when dealing with LOD, not only because of the different kind of links among data, but also because of its high dimensionality. As a consequence, in this position paper we advocate that data mining for OpenBI requires data quality-aware mechanisms for guiding non-expert users in obtaining and sharing the most reliable knowledge from the available LOD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comunicación presentada en las XVI Jornadas de Ingeniería del Software y Bases de Datos, JISBD 2011, A Coruña, 5-7 septiembre 2011.