947 resultados para Wearable Computing Augmented Reality Interfaccia utente Smart Glass Android


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi tratta in modo approfondito il concetto di wearable device, i suoi utilizzi e l'esperienza d'uso da parte dell'utente soffermando l'attenzione sui principali dispositivi presenti in commercio e non. Nello specifico vengono trattati smart watch, smart glass e visori per la realta virtuale. Nella sezione conclusiva vengono trattati gli standard ISO relativi all'ergonomia degli utenti con i computer, descrivendo nel dettaglio le direttive che sono presentate nello standard ISO 9241:210-2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years the number of industrial applications for Augmented Reality (AR) and Virtual Reality (VR) environments has significantly increased. Optical tracking systems are an important component of AR/VR environments. In this work, a low cost optical tracking system with adequate attributes for professional use is proposed. The system works in infrared spectral region to reduce optical noise. A highspeed camera, equipped with daylight blocking filter and infrared flash strobes, transfers uncompressed grayscale images to a regular PC, where image pre-processing software and the PTrack tracking algorithm recognize a set of retro-reflective markers and extract its 3D position and orientation. Included in this work is a comprehensive research on image pre-processing and tracking algorithms. A testbed was built to perform accuracy and precision tests. Results show that the system reaches accuracy and precision levels slightly worse than but still comparable to professional systems. Due to its modularity, the system can be expanded by using several one-camera tracking modules linked by a sensor fusion algorithm, in order to obtain a larger working range. A setup with two modules was built and tested, resulting in performance similar to the stand-alone configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magic Carpet, nato come un middleware orientato a una dimostrazione sullo spatial computing, che inizialmente coinvolgeva solo smart devices ed un tappeto di tag NFC, è il punto di partenza per uno studio sulle tecnologie abilitanti in tale campo. Il prodotto finale è una toolchain per lo sviluppo e la distribuzione, su dispositivi connessi, di applicazioni di spatial computing. Essa comprende un interprete per un DSL basato su un core calculus formalizzato, Field Calculus, e un middleware che supporta l'astrazione curando, a basso livello, le comunicazioni con il vicinato e le percezioni ambientali.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La grande crescita e l'enorme distribuzione che hanno avuto negli ultimi tempi i moderni devices mobile (smartphones, tablet, dispositivi wearable, etc...) ha dato l'avvio ad un massiccio sviluppo di applicazioni mobile di qualunque genere, dall'health-care all'AR (Augmented Reality, realtà aumentata), dalle applicazioni social alle applicazioni che offrono servizi all'utente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il percorso intrapreso per la scrittura della tesi, si snoda essenzialmente in due fasi e nove capitoli. La prima fase ha avuto come scopo l’analisi dal punto di vista tecnologico dell’evoluzione tecnologica avuta nel campo di realtà aumentata e dispositivi wearable in particolare orientandosi verso una tipologia di interazioni hands-free. Questo ha portato ad una ricognizione sullo stato dell’arte permettendo di attenere una base di conoscenza solida per la costruzione del sistema presentato all’interno del caso di studi. I capitoli successivi, in particolare dal quinto, introducono alla seconda fase ed hanno lo scopo di progettare e realizzare il sistema proposto, partendo da un’attenta analisi delle caratteristiche richieste passando per la prototipazione e successiva definizione delle caratteristiche atte alla valutazione del sistema stesso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of 3D imaging techniques has been early adopted in the footwear industry. In particular, 3D imaging could be used to aid commerce and improve the quality and sales of shoes. Footwear customization is an added value aimed not only to improve product quality, but also consumer comfort. Moreover, customisation implies a new business model that avoids the competition of mass production coming from new manufacturers settled mainly in Asian countries. However, footwear customisation implies a significant effort at different levels. In manufacturing, rapid and virtual prototyping is required; indeed the prototype is intended to become the final product. The whole design procedure must be validated using exclusively virtual techniques to ensure the feasibility of this process, since physical prototypes should be avoided. With regard to commerce, it would be desirable for the consumer to choose any model of shoes from a large 3D database and be able to try them on looking at a magic mirror. This would probably reduce costs and increase sales, since shops would not require storing every shoe model and the process of trying several models on would be easier and faster for the consumer. In this paper, new advances in 3D techniques coming from experience in cinema, TV and games are successfully applied to footwear. Firstly, the characteristics of a high-quality stereoscopic vision system for footwear are presented. Secondly, a system for the interaction with virtual footwear models based on 3D gloves is detailed. Finally, an augmented reality system (magic mirror) is presented, which is implemented with low-cost computational elements that allow a hypothetical customer to check in real time the goodness of a given virtual footwear model from an aesthetical point of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized crosscorrelation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates di erent temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1:6 1:9% and 4:0 4:2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we argue that digital simulations promote and explore complex relations between the player and the machines cybernetic system with which it relates through gameplay, that is, the real application of tactics and strategies used by participants as they play the game. We plan to show that the realism of simulation, together with the merger of artificial objects with the real world, can generate interactive empathy between players and their avatars. In this text, we intend to explore augmented reality as a means to visualise interactive communication projects. With ARToolkit, Virtools and 3ds Max applications, we aim to show how to create a portable interactive platform that resorts to the environment and markers for constructing the games scenario. Many of the conventional functions of the human eye are being replaced by techniques where images do not position themselves in the traditional manner that we observe them (Crary, 1998), or in the way we perceive the real world. The digitalization of the real world to a new informational layer over objects, people or environments, needs to be processed and mediated by tools that amplify the natural human senses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the last decade research in Group Decision Making area have been focus in the building of meeting rooms that could support the decision making task and improve the quality of those decisions. However the emergence of Ambient Intelligence concept contributes with a new perspective, a different way of viewing traditional decision rooms. In this paper we will present an overview of Smart Decision Rooms providing Intelligence to the meeting environment, and we will also present LAID, an Ambient Intelligence Environment oriented to support Group Decision Making and some of the software tools that we already have installed in this environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestrado em Engenharia de Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the problem of privacy-preserving proofs on authenticated data, where a party receives data from a trusted source and is requested to prove computations over the data to third parties in a correct and private way, i.e., the third party learns no information on the data but is still assured that the claimed proof is valid. Our work particularly focuses on the challenging requirement that the third party should be able to verify the validity with respect to the specific data authenticated by the source — even without having access to that source. This problem is motivated by various scenarios emerging from several application areas such as wearable computing, smart metering, or general business-to-business interactions. Furthermore, these applications also demand any meaningful solution to satisfy additional properties related to usability and scalability. In this paper, we formalize the above three-party model, discuss concrete application scenarios, and then we design, build, and evaluate ADSNARK, a nearly practical system for proving arbitrary computations over authenticated data in a privacy-preserving manner. ADSNARK improves significantly over state-of-the-art solutions for this model. For instance, compared to corresponding solutions based on Pinocchio (Oakland’13), ADSNARK achieves up to 25× improvement in proof-computation time and a 20× reduction in prover storage space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En aquest treball s'exposa un petit estudi de la tecnologia Android, també es fa un anàlisi de la realitat augmentada i del framework LookAR. Es comença amb una visió general del funcionament d'Android, es repassa el concepte de realitat augmentada i s'analitzen diferents eines de treball per RA. Es fa una descripció del funcionament de LookAR i s'analitzen les eines per a mapes GoogleMaps i OpenstreetMaps. Finalment es realitza una aplicació en Android amb quatres funcionalitats. Una funció de càmera de realitat augmentada amb el framework Lookar, una funció de GoogleMaps per mostrar la nostra ubicació en un mapa, una altre funció per mostrar la localització via GPS o WIFI i finalment una funció per mostrar una llista de diferents punts d'interès que s'utilitzaran per mostrar informació sobre el mapa i en la càmera de realitat augmentada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo principal de este proyecto es el de obtener unos conocimientos detallados del sistema operativo Android y el de ejemplificarlos mediante un aplicativo que haga uso de las características más peculiares de los dispositivos móviles en los que se ejecuta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Our aim was to evaluate a fluorescence-based enhanced-reality system to assess intestinal viability in a laparoscopic mesenteric ischemia model. MATERIALS AND METHODS: A small bowel loop was exposed, and 3 to 4 mesenteric vessels were clipped in 6 pigs. Indocyanine green (ICG) was administered intravenously 15 minutes later. The bowel was illuminated with an incoherent light source laparoscope (D-light-P, KarlStorz). The ICG fluorescence signal was analyzed with Ad Hoc imaging software (VR-RENDER), which provides a digital perfusion cartography that was superimposed to the intraoperative laparoscopic image [augmented reality (AR) synthesis]. Five regions of interest (ROIs) were marked under AR guidance (1, 2a-2b, 3a-3b corresponding to the ischemic, marginal, and vascularized zones, respectively). One hour later, capillary blood samples were obtained by puncturing the bowel serosa at the identified ROIs and lactates were measured using the EDGE analyzer. A surgical biopsy of each intestinal ROI was sent for mitochondrial respiratory rate assessment and for metabolites quantification. RESULTS: Mean capillary lactate levels were 3.98 (SD = 1.91) versus 1.05 (SD = 0.46) versus 0.74 (SD = 0.34) mmol/L at ROI 1 versus 2a-2b (P = 0.0001) versus 3a-3b (P = 0.0001), respectively. Mean maximal mitochondrial respiratory rate was 104.4 (±21.58) pmolO2/second/mg at the ROI 1 versus 191.1 ± 14.48 (2b, P = 0.03) versus 180.4 ± 16.71 (3a, P = 0.02) versus 199.2 ± 25.21 (3b, P = 0.02). Alanine, choline, ethanolamine, glucose, lactate, myoinositol, phosphocholine, sylloinositol, and valine showed statistically significant different concentrations between ischemic and nonischemic segments. CONCLUSIONS: Fluorescence-based AR may effectively detect the boundary between the ischemic and the vascularized zones in this experimental model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.