105 resultados para Waxes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite materials arise from the need for lighter materials and with bigger mechanical and thermal resistance. The difficulties of discard, recycling or reuse are currently environmental concerns and, therefore, they are study object of much researches. In this perspective the feasibility of using loofahs (Luffa Cylindrica) for obtainment of a polymeric matrix composite was studied. Six formulations, with 4, 5 and 6 treated layers and untreated, were tested. The loofahs were treated in boiling water to remove lignins, waxes and impurities present in the fibers. After that, they were dried in a direct exposure solar dryer. For the characterization of the composite, thermal (thermal conductivity, thermal capacity, thermal diffusivity and thermal resistivity), mechanical (tensile and bending resistance) and physicochemical (SEM, XRD, density, absorption and degradation) properties were determined. The proposed composite has as advantage the low fiber density, which is around 0.66 g/cm³ (almost half of the polyester resin matrix), resulting in an average composite density of around 1.17g/cm³, 6.0 % lower in relation to the matrix. The treatment carried out in the loofahs increased the mechanical strength of the composite and decreased the humidity absorption. The composite showed lower mechanical behavior than the matrix for all the formulations. The composite also demonstrated itself to be feasible for thermal applications, with a value of thermal conductivity of less than 0.159 W/m.K, ranking it as a good thermal insulator. For all formulations/settings a low adherence between fibers and matrix occurred, with the presence of cracks, showing the fragility due to low impregnation of the fiber by the matrix. This composite can be used to manufacture structures that do not require significant mechanical strength, such as solar prototypes, as ovens and stoves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite materials arise from the need for lighter materials and with bigger mechanical and thermal resistance. The difficulties of discard, recycling or reuse are currently environmental concerns and, therefore, they are study object of much researches. In this perspective the feasibility of using loofahs (Luffa Cylindrica) for obtainment of a polymeric matrix composite was studied. Six formulations, with 4, 5 and 6 treated layers and untreated, were tested. The loofahs were treated in boiling water to remove lignins, waxes and impurities present in the fibers. After that, they were dried in a direct exposure solar dryer. For the characterization of the composite, thermal (thermal conductivity, thermal capacity, thermal diffusivity and thermal resistivity), mechanical (tensile and bending resistance) and physicochemical (SEM, XRD, density, absorption and degradation) properties were determined. The proposed composite has as advantage the low fiber density, which is around 0.66 g/cm³ (almost half of the polyester resin matrix), resulting in an average composite density of around 1.17g/cm³, 6.0 % lower in relation to the matrix. The treatment carried out in the loofahs increased the mechanical strength of the composite and decreased the humidity absorption. The composite showed lower mechanical behavior than the matrix for all the formulations. The composite also demonstrated itself to be feasible for thermal applications, with a value of thermal conductivity of less than 0.159 W/m.K, ranking it as a good thermal insulator. For all formulations/settings a low adherence between fibers and matrix occurred, with the presence of cracks, showing the fragility due to low impregnation of the fiber by the matrix. This composite can be used to manufacture structures that do not require significant mechanical strength, such as solar prototypes, as ovens and stoves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various studies have demonstrated that the stable hydrogen isotopic composition (dD) of terrestrial leaf waxes tracks that of precipitation (dDprecip) both spatially across climate gradients and over a range of different timescales. Yet, reconstructed estimates of dDprecip and corresponding rainfall typically remain largely qualitative, due mainly to uncertainties in plant ecosystem net fractionation, relative humidity, and the stability of the amount effect through time. Here we present dD values of the C31n-alkane (dDwax) from a marine sediment core offshore the Northwest (NW) African Sahel covering the past 100 years and overlapping with the instrumental record of rainfall. We use this record to investigate whether accurate, quantitative estimates of past rainfall can be derived from our dDwax time series. We infer the composition of vegetation (C3/C4) within the continental catchment area by analysis of the stable carbon isotopic composition of the same compounds (d13Cwax), calculated a net ecosystem fractionation factor, and corrected the dDwax time series accordingly to derive dDprecip. Using the present-day relationship between dDprecip and the amount of precipitation in the tropics, we derive quantitative estimates of past precipitation amounts. Our data show that (a) vegetation composition can be inferred from d13Cwax, (b) the calculated net ecosystem fractionation represents a reasonable estimate, and (c) estimated total amounts of rainfall based on dDwax correspond to instrumental records of rainfall. Our study has important implications for future studies aiming to reconstruct rainfall based on dDwax; the combined data presented here demonstrate that it is feasible to infer absolute rainfall amounts from sedimentary dDwax in tandem with d13Cwax in specific depositional settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dominant forcing factors for past large-scale changes in vegetation are widely debated. Changes in the distribution of C4 plants-adapted to warm, dry conditions and low atmospheric CO2 concentrations (Collatz et al., 1998, doi:10.1007/s004420050468) -have been attributed to marked changes in environmental conditions, but the relative impacts of changes in aridity, temperature (Pagani et al., 1999, doi:10.1126/science.285.5429.876; Huang et al., 2001, doi:10.1126/science.1060143) and CO2 concentration (Cerling et al., 1993, doi:10.1038/361344a0; Kuypers et al., 1999, doi:10.1038/20659) are not well understood. Here, we present a record of African C4 plant abundance between 1.2 and 0.45 million years ago, derived from compound-specific carbon isotope analyses of wind-transported terrigenous plant waxes. We find that large-scale changes in African vegetation are linked closely to sea surface temperatures in the tropical Atlantic Ocean. We conclude that, in the mid-Pleistocene, changes in atmospheric moisture content - driven by tropical sea surface temperature changes and the strength of the African monsoon - controlled aridity on the African continent, and hence large-scale vegetation changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carbon isotopic composition of individual plant leaf waxes (a proxy for C3 vs. C4 vegetation) in a marine sediment core collected from beneath the plume of Sahara-derived dust in northwest Africa reveals three periods during the past 192,000 years when the central Sahara/Sahel contained C3 plants (likely trees), indicating substantially wetter conditions than at present. Our data suggest that variability in the strength of Atlantic meridional overturning circulation (AMOC) is a main control on vegetation distribution in central North Africa, and we note expansions of C3 vegetation during the African Humid Period (early Holocene) and within Marine Isotope Stage (MIS) 3 (approx. 50-45 ka) and MIS 5 (approx. 120-110 ka). The wet periods within MIS 3 and 5 coincide with major human migration events out of sub-Saharan Africa. Our results thus suggest that changes in AMOC influenced North African climate and, at times, contributed to amenable conditions in the central Sahara/Sahel, allowing humans to cross this otherwise inhospitable region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trees and shrubs in tropical Africa use the C3 cycle as a carbon fixation pathway during photosynthesis, while grasses and sedges mostly use the C4 cycle. Leaf-wax lipids from sedimentary archives such as the long-chain n-alkanes (e.g., n-C27 to n-C33) inherit carbon isotope ratios that are representative of the carbon fixation pathway. Therefore, n-alkane d13C values are often used to reconstruct past C3/C4 composition of vegetation, assuming that the relative proportions of C3 and C4 leaf waxes reflect the relative proportions of C3 and C4 plants. We have compared the d13C values of n-alkanes from modern C3 and C4 plants with previously published values from recent lake sediments and provide a framework for estimating the fractional contribution (areal-based) of C3 vegetation cover (fC3) represented by these sedimentary archives. Samples were collected in Cameroon, across a latitudinal transect that accommodates a wide range of climate zones and vegetation types, as reflected in the progressive northward replacement of C3-dominated rain forest by C4-dominated savanna. The C3 plants analysed were characterised by substantially higher abundances of n-C29 alkanes and by substantially lower abundances of n-C33 alkanes than the C4 plants. Furthermore, the sedimentary d13C values of n-C29 and n-C31 alkanes from recent lake sediments in Cameroon (-37.4 per mil to -26.5 per mil) were generally within the range of d13C values for C3 plants, even when from sites where C4 plants dominated the catchment vegetation. In such cases simple linear mixing models fail to accurately reconstruct the relative proportions of C3 and C4 vegetation cover when using the d13C values of sedimentary n-alkanes, overestimating the proportion of C3 vegetation, likely as a consequence of the differences in plant wax production, preservation, transport, and/or deposition between C3 and C4 plants. We therefore tested a set of non-linear binary mixing models using d13C values from both C3 and C4 vegetation as end-members. The non-linear models included a sigmoid function (sine-squared) that describes small variations in the fC3 values as the minimum and maximum d13C values are approached, and a hyperbolic function that takes into account the differences between C3 and C4 plants discussed above. Model fitting and the estimation of uncertainties were completed using the Monte Carlo algorithm and can be improved by future data addition. Models that provided the best fit with the observed d13C values of sedimentary n-alkanes were either hyperbolic functions or a combination of hyperbolic and sine-squared functions. Such non-linear models may be used to convert d13C measurements on sedimentary n-alkanes directly into reconstructions of C3 vegetation cover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a Younger Dryas-Holocene record of the hydrogen isotopic composition of sedimentary plant waxes (dDwax) from the southern European Alps (Lake Ghirla, N-Italy) to investigate its sensitivity to climatic forcing variations in this mid-latitude region (45°N). A modern altitudinal transect of dD values of river water and leaf waxes in the Lake Ghirla catchment is used to test present-day climate sensitivity of dDwax. While we find that altitudinal effects on dDwax are minor at our study site, temperature, precipitation amount, and evapotranspiration all appear to influence dDwax to varying extents. In the lake-sediment record, dDwax values vary between -134 and -180 per mil over the past 13 kyr. The long-term Holocene pattern of dDwax parallels the trend of decreasing temperature and is thus likely forced by the decline of northern hemisphere summer insolation. Shorter-term fluctuations, in contrast, may reflect both temperature and moisture-source changes. During the cool Younger Dryas and Little Ice Age (LIA) periods we observe unexpectedly high dDwax values relative to those before and after. We suggest that a change towards a more D-enriched moisture source is required during these intervals. In fact, a shift from northern N-Atlantic to southern N-Atlantic/western Mediterranean Sea sources would be consistent with a southward migration of the Westerlies with climate cooling. Prominent dDwax fluctuations in the early and middle Holocene are negative and potentially associated with temperature declines. In the late Holocene (<4 kyr BP), excursions are partly positive (as for the LIA) suggesting a stronger influence of moisture-source changes on dDwax variation. In addition to isotopic fractionations of the hydrological cycle, changes in vegetation composition, in the length of the growing season, and in snowfall amount provide additional potential sources of variability, although we cannot yet quantitatively assess these in the paleo-record. We conclude that while our dDwax record from the Alps does contain climatic information, it is a complicated record that would require additional constraints to be robustly interpreted. This also has important implications for other water-isotope-based proxy records of precipitation and hydro-climate from this region, such as cave speleothems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of global warming the energy production development has progressed towards more renewable energy sources. Biomass has great potential in this matter and pellet is already a big market that has increased seven times the past decade. A periodically strained woodchip resource market and statements of short supply in the future has got actors exploring opportunities with other commodities. Grasses such as Canary grass has shown great potential in this matter and in this study a wetland grass is tested as an additive, 0,5, 1,0, 1,5, and 1,9%, with spruce woodchips. The test production series was performed at a production unit located at the department of environmental and energy system at Karlstad University, Karlstad. Quality was controlled accordingly to the European standard and parameters such as energy consumption, moisture content, mechanical durability and bulk density was tested. For comparison, a sample with only spruce wood chips was produced, and a sample containing 1% of a commonly used additive, potato starch. The results showed that a decrease in energy consumption with 14% when 2% wetland grass was added, part of the decline may be due to the increased production flow compared with the reference sample. The positive effects on decrease in energy consumption, that 1% potato starch results in, is equal to reults from 1% wetlandgrass. This indicates lubricating properties in wetlandgrass. This is attributed to that herbaceous plants have a high content of extracts such as waxes and that they cause less friction in the press. Tests also showed that pellet with wetland grass did not qualify the European standard in terms of mechanical durability. Extracts can form a weak boundary layer in the pellet and cause this. A possible trend shows a better mechanical durability with more grass in pellets. The presence of different size of particles can be a reason. Moisture content qualifies according to the European standard but is below optimum 8%. This despite to relatively high moisture content in the mixer. Higher moisture content in the press would certainly result in a generally higher quality. Suggestions for future studies are to produce pellets with greater distribution on the wetland grass added, to easier interpret a connection. Also examine the extracts behavior with different moisture content. For a sustainable development accordingly renewable energy it is important to ensure the future commodity market for pellets. Further studies should be performed to help the development of alternative raw materials in conjunction with pellet production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The East Asian Monsoon (EAM) is an active component of the global climate system and has a profound social and economic impact in East Asia and its surrounding countries. Its impact on regional hydrological processes may influence society through industrial water supplies, food productivity and energy use. In order to predict future rates of climate change, reliable and accurate reconstructions of regional temperature and rainfall are required from all over the world to test climate models and better predict future climate variability. Hokkaido is a region which has limited palaeo-climate data and is sensitive to climate change. Instrumental data show that the climate in Hokkaido is influenced by the East Asian Monsoon (EAM), however, instrumental data is limited to the past ~150 years. Therefore down-core climate reconstructions, prior to instrumental records, are required to provide a better understanding of the long-term behaviour of the climate drivers (e.g. the EAM, Westerlies, and teleconnections) in this region. The present study develops multi-proxy reconstructions to determine past climatic and hydrologic variability in Japan over the past 1000 years and aid in understanding the effects of the EAM and the Westerlies independently and interactively. A 250-cm long sediment core from Lake Toyoni, Hokkaido was retrieved to investigate terrestrial and aquatic input, lake temperature and hydrological changes over the past 1000-years within Lake Toyoni and its catchment using X-Ray Fluorescence (XRF) data, alkenone palaeothermometry, the molecular and hydrogen isotopic composition of higher plant waxes (δD(HPW)). Here, we conducted the first survey for alkenone biomarkers in eight lakes in the Hokkaido, Japan. We detected the occurrence of alkenones within the sediments of Lake Toyoni. We present the first lacustrine alkenone record from Japan, including genetic analysis of the alkenone producer. C37 alkenone concentrations in surface sediments are 18µg C37 g−1 of dry sediment and the dominant alkenone is C37:4. 18S rDNA analysis revealed the presence of a single alkenone producer in Lake Toyoni and thus a single calibration is used for reconstructing lake temperature based on alkenone unsaturation patterns. Temperature reconstructions over the past 1000 years suggest that lake water temperatures varies between 8 and 19°C which is in line with water temperature changes observed in the modern Lake Toyoni. The alkenone-based temperature reconstruction provides evidence for the variability of the EAM over the past 1000 years. The δD(HPW) suggest that the large fluctuations (∼40‰) represent changes in temperature and source precipitation in this region, which is ultimately controlled by the EAM system and therefore a proxy for the EAM system. In order to complement the biomarker reconstructions, the XRF data strengthen the lake temperature and hydrological reconstructions by providing information on past productivity, which is controlled by the East Asian Summer monsoon (EASM) and wind input into Lake Toyoni, which is controlled by the East Asian Winter Monsoon (EAWM) and the Westerlies. By combining the data generated from XRF, alkenone palaeothermometry and the δD(HPW) reconstructions, we provide valuable information on the EAM and the Westerlies, including; the timing of intensification and weakening, the teleconnections influencing them and the relationship between them. During the Medieval Warm Period (MWP), we find that the EASM dominated and the EAWM was suppressed, whereas, during the Little Ice Age (LIA), the influence of the EAWM dominated with time periods of increased EASM and Westerlies intensification. The El Niño Southern Oscillation (ENSO) significantly influenced the EAM; a strong EASM occurred during El Niño conditions and a strong EAWM occurred during La Niña. The North Atlantic Oscillation, on the other hand, was a key driver of the Westerlies intensification; strengthening of the Westerlies during a positive NAO phase and weakening of the Westerlies during a negative NAO phase. A key finding from this study is that our data support an anti-phase relationship between the EASM and the EAWM (e.g. the intensification of the EASM and weakening of the EAWM and vice versa) and that the EAWM and the Westerlies vary independently from each other, rather than coincide as previously suggested in other studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive sequential extraction procedure was applied to isolate soil organic components using aqueous solvents at different pH values, base plus urea (base-urea), and finally dimethylsulfoxide (DMSO) plus concentrated H2SO4 (DMSO-acid) for the humin-enriched clay separates. The extracts from base-urea and DMSO-acid would be regarded as 'humin' in the classical definitions. The fractions isolated from aqueous base, base-urea and DMSO-acid were characterized by solid and solution state NMR spectroscopy. The base-urea solvent system isolated ca. 10% (by mass) additional humic substances. The combined base-urea and DMSO-acid solvents isolated ca. 93% of total organic carbon from the humin-enriched fine clay fraction (<2 ?m). Characterization of the humic fractions by solid-state NMR spectroscopy showed that oxidized char materials were concentrated in humic acids isolated at pH 7, and in the base-urea extract. Lignin-derived materials were in considerable abundance in the humic acids isolated at pH 12.6. Only very small amounts of char-derived structures were contained in the fulvic acids and fulvic acids-like material isolated from the base-urea solvent. After extraction with base-urea, the 0.5 m NaOH extract from the humin-enriched clay was predominantly composed of aliphatic hydrocarbon groups, and with lesser amounts of aromatic carbon (probably including some char material), and carbohydrates and peptides. From the combination of solid and solution-state NMR spectroscopy, it is clear that the major components of humin materials, from the DMSO-acid solvent, after the exhaustive extraction sequence, were composed of microbial and plant derived components, mainly long-chain aliphatic species (including fatty acids/ester, waxes, lipids and cuticular material), carbohydrate, peptides/proteins, lignin derivatives, lipoprotein and peptidoglycan (major structural components in bacteria cell walls). Black carbon or char materials were enriched in humic acids isolated at pH 7 and humic acids-like material isolated in the base-urea medium, indicating that urea can liberate char-derived material hydrogen bonded or trapped within the humin matrix.