893 resultados para Wavelet Transforms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major issue in the application of waveform inversion methods to crosshole ground-penetrating radar (GPR) data is the accurate estimation of the source wavelet. Here, we explore the viability and robustness of incorporating this step into a recently published time-domain inversion procedure through an iterative deconvolution approach. Our results indicate that, at least in non-dispersive electrical environments, such an approach provides remarkably accurate and robust estimates of the source wavelet even in the presence of strong heterogeneity of both the dielectric permittivity and electrical conductivity. Our results also indicate that the proposed source wavelet estimation approach is relatively insensitive to ambient noise and to the phase characteristics of the starting wavelet. Finally, there appears to be little to no trade-off between the wavelet estimation and the tomographic imaging procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EEG recordings are usually corrupted by spurious extra-cerebral artifacts, which should be rejected or cleaned up by the practitioner. Since manual screening of human EEGs is inherently error prone and might induce experimental bias, automatic artifact detection is an issue of importance. Automatic artifact detection is the best guarantee for objective and clean results. We present a new approach, based on the time–frequency shape of muscular artifacts, to achieve reliable and automatic scoring. The impact of muscular activity on the signal can be evaluated using this methodology by placing emphasis on the analysis of EEG activity. The method is used to discriminate evoked potentials from several types of recorded muscular artifacts—with a sensitivity of 98.8% and a specificity of 92.2%. Automatic cleaning ofEEGdata are then successfully realized using this method, combined with independent component analysis. The outcome of the automatic cleaning is then compared with the Slepian multitaper spectrum based technique introduced by Delorme et al (2007 Neuroimage 34 1443–9).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho foi definir a resolução espacial mais apropriada para representar a variabilidade da elevação, declividade, curvatura em perfil e índice de umidade topográfica de um terreno, por meio de avaliações com a transformada wavelet. Os dados utilizados no estudo têm sua origem em três transectos de 27 km, posicionados em áreas do Planalto, Rebordo do Planalto e Depressão Central na região central do Estado do Rio Grande do Sul. As variáveis - elevação, declividade, curvatura em perfil e índice de umidade topográfica - foram derivadas de um modelo digital de elevação Topodata com resolução de 30 m. A avaliação da resolução com a máxima variabilidade foi realizada pela aplicação da wavelet-mãe, denominada Morlet. Os resultados foram analisados a partir do isograma e do escalograma dos coeficientes wavelet e indicaram que sensores remotos com resolução espacial próxima a 32 e 40 m podem ser utilizados em pesquisas que considerem os atributos de terreno, como declividade, curvatura em perfil e índice de umidade topográfica, ou, ainda, fenômenos ambientais correlacionados a eles. No entanto, não foi possível estabelecer um valor conclusivo para a resolução espacial mais adequada para a variável elevação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel high capacity robust audio watermarking algorithm by using the high frequency band of the wavelet decomposition at which the human auditory system (HAS) is not very sensitive to alteration. The main idea is to divide the high frequency band into frames and, for embedding, to change the wavelet samples depending on the average of relevant frame¿s samples. The experimental results show that the method has a very high capacity (about 11,000 bps), without significant perceptual distortion (ODG in [¿1 ,0] and SNR about 30dB), and provides robustness against common audio signal processing such as additive noise, filtering, echo and MPEG compression (MP3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A discussion on the expression proposed in [1]–[3]for deconvolving the wideband density function is presented. Weprove here that such an expression reduces to be proportionalto the wideband correlation receiver output, or continuous wavelettransform of the received signal with respect to the transmittedone. Moreover, we show that the same result has been implicitlyassumed in [1], when the deconvolution equation is derived. Westress the fact that the analyzed approach is just the orthogonalprojection of the density function onto the image of the wavelettransform with respect to the transmitted signal. Consequently,the approach can be considered a good representation of thedensity function only under the prior knowledge that the densityfunction belongs to such a subspace. The choice of the transmittedsignal is thus crucial to this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of selecting anappropriate wavelet filter is always present in signal compression based on thewavelet transform. In this report, we propose a method to select a wavelet filter from a predefined set of filters for the compression of spectra from a multispectral image. The wavelet filter selection is based on the Learning Vector Quantization (LVQ). In the training phase for the test images, the best wavelet filter for each spectrum has been found by a careful compression-decompression evaluation. Certain spectral features are used in characterizing the pixel spectra. The LVQ is used to form the best wavelet filter class for different types of spectra from multispectral images. When a new image is to be compressed, a set of spectra from that image is selected, the spectra are classified by the trained LVQand the filter associated to the largest class is selected for the compression of every spectrum from the multispectral image. The results show, that almost inevery case our method finds the most suitable wavelet filter from the pre-defined set for the compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multispectral images contain information from several spectral wavelengths and currently multispectral images are widely used in remote sensing and they are becoming more common in the field of computer vision and in industrial applications. Typically, one multispectral image in remote sensing may occupy hundreds of megabytes of disk space and several this kind of images may be received from a single measurement. This study considers the compression of multispectral images. The lossy compression is based on the wavelet transform and we compare the suitability of different waveletfilters for the compression. A method for selecting a wavelet filter for the compression and reconstruction of multispectral images is developed. The performance of the multidimensional wavelet transform based compression is compared to other compression methods like PCA, ICA, SPIHT, and DCT/JPEG. The quality of the compression and reconstruction is measured by quantitative measures like signal-to-noise ratio. In addition, we have developed a qualitative measure, which combines the information from the spatial and spectral dimensions of a multispectral image and which also accounts for the visual quality of the bands from the multispectral images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies gray-level distance transforms, particularly the Distance Transform on Curved Space (DTOCS). The transform is produced by calculating distances on a gray-level surface. The DTOCS is improved by definingmore accurate local distances, and developing a faster transformation algorithm. The Optimal DTOCS enhances the locally Euclidean Weighted DTOCS (WDTOCS) with local distance coefficients, which minimize the maximum error from the Euclideandistance in the image plane, and produce more accurate global distance values.Convergence properties of the traditional mask operation, or sequential localtransformation, and the ordered propagation approach are analyzed, and compared to the new efficient priority pixel queue algorithm. The Route DTOCS algorithmdeveloped in this work can be used to find and visualize shortest routes between two points, or two point sets, along a varying height surface. In a digital image, there can be several paths sharing the same minimal length, and the Route DTOCS visualizes them all. A single optimal path can be extracted from the route set using a simple backtracking algorithm. A new extension of the priority pixel queue algorithm produces the nearest neighbor transform, or Voronoi or Dirichlet tessellation, simultaneously with the distance map. The transformation divides the image into regions so that each pixel belongs to the region surrounding the reference point, which is nearest according to the distance definition used. Applications and application ideas for the DTOCS and its extensions are presented, including obstacle avoidance, image compression and surface roughness evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaatimus kuvatiedon tiivistämisestä on tullut entistä ilmeisemmäksi viimeisen kymmenen vuoden aikana kuvatietoon perustuvien sovellutusten myötä. Nykyisin kiinnitetään erityistä huomiota spektrikuviin, joiden tallettaminen ja siirto vaativat runsaasti levytilaa ja kaistaa. Aallokemuunnos on osoittautunut hyväksi ratkaisuksi häviöllisessä tiedontiivistämisessä. Sen toteutus alikaistakoodauksessa perustuu aallokesuodattimiin ja ongelmana on sopivan aallokesuodattimen valinta erilaisille tiivistettäville kuville. Tässä työssä esitetään katsaus tiivistysmenetelmiin, jotka perustuvat aallokemuunnokseen. Ortogonaalisten suodattimien määritys parametrisoimalla on työn painopisteenä. Työssä todetaan myös kahden erilaisen lähestymistavan samanlaisuus algebrallisten yhtälöiden avulla. Kokeellinen osa sisältää joukon testejä, joilla perustellaan parametrisoinnin tarvetta. Erilaisille kuville tarvitaan erilaisia suodattimia sekä erilaiset tiivistyskertoimet saavutetaan eri suodattimilla. Lopuksi toteutetaan spektrikuvien tiivistys aallokemuunnoksen avulla.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroencephalographic (EEG) recordings are, most of the times, corrupted by spurious artifacts, which should be rejected or cleaned by the practitioner. As human scalp EEG screening is error-prone, automatic artifact detection is an issue of capital importance, to ensure objective and reliable results. In this paper we propose a new approach for discrimination of muscular activity in the human scalp quantitative EEG (QEEG), based on the time-frequency shape analysis. The impact of the muscular activity on the EEG can be evaluated from this methodology. We present an application of this scoring as a preprocessing step for EEG signal analysis, in order to evaluate the amount of muscular activity for two set of EEG recordings for dementia patients with early stage of Alzheimer’s disease and control age-matched subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deals with distance transforms which are a fundamental issue in image processing and computer vision. In this thesis, two new distance transforms for gray level images are presented. As a new application for distance transforms, they are applied to gray level image compression. The new distance transforms are both new extensions of the well known distance transform algorithm developed by Rosenfeld, Pfaltz and Lay. With some modification their algorithm which calculates a distance transform on binary images with a chosen kernel has been made to calculate a chessboard like distance transform with integer numbers (DTOCS) and a real value distance transform (EDTOCS) on gray level images. Both distance transforms, the DTOCS and EDTOCS, require only two passes over the graylevel image and are extremely simple to implement. Only two image buffers are needed: The original gray level image and the binary image which defines the region(s) of calculation. No other image buffers are needed even if more than one iteration round is performed. For large neighborhoods and complicated images the two pass distance algorithm has to be applied to the image more than once, typically 3 10 times. Different types of kernels can be adopted. It is important to notice that no other existing transform calculates the same kind of distance map as the DTOCS. All the other gray weighted distance function, GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray levels or weighting the distance values directly by the gray levels in some manner. The DTOCS does not weight them that way. The DTOCS gives a weighted version of the chessboard distance map. The weights are not constant, but gray value differences of the original image. The difference between the DTOCS map and other distance transforms for gray level images is shown. The difference between the DTOCS and EDTOCS is that the EDTOCS calculates these gray level differences in a different way. It propagates local Euclidean distances inside a kernel. Analytical derivations of some results concerning the DTOCS and the EDTOCS are presented. Commonly distance transforms are used for feature extraction in pattern recognition and learning. Their use in image compression is very rare. This thesis introduces a new application area for distance transforms. Three new image compression algorithms based on the DTOCS and one based on the EDTOCS are presented. Control points, i.e. points that are considered fundamental for the reconstruction of the image, are selected from the gray level image using the DTOCS and the EDTOCS. The first group of methods select the maximas of the distance image to new control points and the second group of methods compare the DTOCS distance to binary image chessboard distance. The effect of applying threshold masks of different sizes along the threshold boundaries is studied. The time complexity of the compression algorithms is analyzed both analytically and experimentally. It is shown that the time complexity of the algorithms is independent of the number of control points, i.e. the compression ratio. Also a new morphological image decompression scheme is presented, the 8 kernels' method. Several decompressed images are presented. The best results are obtained using the Delaunay triangulation. The obtained image quality equals that of the DCT images with a 4 x 4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal processing methods based on the combined use of the continuous wavelet transform (CWT) and zero-crossing technique were applied to the simultaneous spectrophotometric determination of perindopril (PER) and indapamide (IND) in tablets. These signal processing methods do not require any priory separation step. Initially, various wavelet families were tested to identify the optimum signal processing giving the best recovery results. From this procedure, the Haar and Biorthogonal1.5 continuous wavelet transform (HAAR-CWT and BIOR1.5-CWT, respectively) were found suitable for the analysis of the related compounds. After transformation of the absorbance vectors by using HAAR-CWT and BIOR1.5-CWT, the CWT-coefficients were drawn as a graph versus wavelength and then the HAAR-CWT and BIOR1.5-CWT spectra were obtained. Calibration graphs for PER and IND were obtained by measuring the CWT amplitudes at 231.1 and 291.0 nm in the HAAR-CWT spectra and at 228.5 and 246.8 nm in BIOR1.5-CWT spectra, respectively. In order to compare the performance of HAAR-CWT and BIOR1.5-CWT approaches, derivative spectrophotometric (DS) method and HPLC as comparison methods, were applied to the PER-IND samples. In this DS method, first derivative absorbance values at 221.6 for PER and 282.7 nm for IND were used to obtain the calibration graphs. The validation of the CWT and DS signal processing methods was carried out by using the recovery study and standard addition technique. In the following step, these methods were successfully applied to the commercial tablets containing PER and IND compounds and good accuracy and precision were reported for the experimental results obtained by all proposed signal processing methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies properties of transforms based on parabolic scaling, like Curvelet-, Contourlet-, Shearlet- and Hart-Smith-transform. Essentially, two di erent questions are considered: How these transforms can characterize H older regularity and how non-linear approximation of a piecewise smooth function converges. In study of Hölder regularities, several theorems that relate regularity of a function f : R2 → R to decay properties of its transform are presented. Of particular interest is the case where a function has lower regularity along some line segment than elsewhere. Theorems that give estimates for direction and location of this line, and regularity of the function are presented. Numerical demonstrations suggest also that similar theorems would hold for more general shape of segment of low regularity. Theorems related to uniform and pointwise Hölder regularity are presented as well. Although none of the theorems presented give full characterization of regularity, the su cient and necessary conditions are very similar. Another theme of the thesis is the study of convergence of non-linear M ─term approximation of functions that have discontinuous on some curves and otherwise are smooth. With particular smoothness assumptions, it is well known that squared L2 approximation error is O(M-2(logM)3) for curvelet, shearlet or contourlet bases. Here it is shown that assuming higher smoothness properties, the log-factor can be removed, even if the function still is discontinuous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mathematica system (version 4.0) is employed in the solution of nonlinear difusion and convection-difusion problems, formulated as transient one-dimensional partial diferential equations with potential dependent equation coefficients. The Generalized Integral Transform Technique (GITT) is first implemented for the hybrid numerical-analytical solution of such classes of problems, through the symbolic integral transformation and elimination of the space variable, followed by the utilization of the built-in Mathematica function NDSolve for handling the resulting transformed ODE system. This approach ofers an error-controlled final numerical solution, through the simultaneous control of local errors in this reliable ODE's solver and of the proposed eigenfunction expansion truncation order. For covalidation purposes, the same built-in function NDSolve is employed in the direct solution of these partial diferential equations, as made possible by the algorithms implemented in Mathematica (versions 3.0 and up), based on application of the method of lines. Various numerical experiments are performed and relative merits of each approach are critically pointed out.