962 resultados para Wave-generated Flow
Resumo:
Classic flutter analysis models an aerofoil as a two degree-of-freedom rigid body supported by linear and torsional springs, which represent the bending and torsional stiffness of the aerofoil section. In this classic flutter model, no energy transfer or dissipation can occur in the span-wise direction of the aerofoil section. However, as the aspect ratio of an aerofoil section increases, this span-wise energy transfer - in the form of travelling waves - becomes important to the overall system dynamics. This paper extends the classic flutter model to include travelling waves in the span-wise direction. Namely, wave dispersion and power flow analysis of an infinite, aerofoil-shaped beam, subject to bending, torsion, tension and a constant wind excitation, is used to investigate the overall system stability. Examples of potential applications for these high aspect ratio aerofoil sections include high-altitude balloon tethers, towed cables, offshore risers and mooring lines.
Resumo:
This paper discusses the Klein–Gordon–Zakharov system with different-degree nonlinearities in two and three space dimensions. Firstly, we prove the existence of standing wave with ground state by applying an intricate variational argument. Next, by introducing an auxiliary functional and an equivalent minimization problem, we obtain two invariant manifolds under the solution flow generated by the Cauchy problem to the aforementioned Klein–Gordon–Zakharov system. Furthermore, by constructing a type of constrained variational problem, utilizing the above two invariant manifolds as well as applying potential well argument and concavity method, we derive a sharp threshold for global existence and blowup. Then, combining the above results, we obtain two conclusions of how small the initial data are for the solution to exist globally by using dilation transformation. Finally, we prove a modified instability of standing wave to the system under study.
Resumo:
The generation of internal gravity waves by barotropic tidal flow passing over a two-dimensional topography is investigated. Rather than calculating the conversion of tidal energy, this study focuses on delineating the geometric characteristics of the spatial structure of the resulting internal wave fields (i.e., the configurations of the internal beams and their horizontal projections) which have usually been ignored. it is found that the various possible wave types can be demarcated by three characteristic frequencies: the tidal frequency, wo; the buoyancy frequency, N; and the vertical component of the Coriolis vector or earth's rotation.f. When different possibilities arising from the sequence of these frequencies are considered, there occur 12 kinds of wave structures in the full 3D space in contrast to the 5 kinds identified by the 2D theory. The constant wave phase lines may form as ellipses or hyperbolic lines on the horizontal plane, provided the buoyancy frequency is greater or less than the tidal frequency. The effect that stems from the consideration of the basic flow is also found, which not only serves as the reason for the occurrence of higtter harmonics but also increases the wave strength in the direction of basic flow. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Wave generation by the falling rock in the two-dimensional wave tank is experimentally and numerically studied, where the numerical model utilizes the boundary element method to solve the fully nonlinear potential flow theory. The wave profiles at different times are measured in the laboratory, which are also used to test the numerical model. Comparisons show that the experimental and numerical results are in good agreement, and the numerical model can be used to simulate the wave generation due to the submarine rock falling. Further numerical tests on the influences of the rock size, density, initial position and the falling angle on the wave elevation of the generated waves are performed, respectively. The results show that the size and density of the rock have strong effects on the maximum elevation of the generated wave, while the effects of the initial position and the falling angle of the rock are also significant. When the size or the density of the rock increases, the maximum elevation of the generated wave increases. The same effect on the generated wave would be produced if the initial position of the rock becomes closer to the surface, or the falling angle between the falling route and the vertical direction turns larger. In addition, the present numerical tests reveal that the submarine rock falling provides a new generation method for the breaking wave in the wave tank.
Resumo:
Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-epsilon turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.
Resumo:
This note presents a simple model for prediction of liquid hold-up in two-phase horizontal pipe flow for the stratified roll wave (St+RW) flow regime. Liquid hold-up data for horizontal two-phase pipe flow [1, 2, 3, 4, 5 and 6] exhibit a steady increase with liquid velocity and a more dramatic fall with increasing gas rate as shown by Hand et al. [7 and 8] for example. In addition the liquid hold-up is reported to show an additional variation with pipe diameter. Generally, if the initial liquid rate for the no-gas flow condition gives a liquid height below the pipe centre line, the flow patterns pass successively through the stratified (St), stratified ripple (St+R), stratified roll wave, film plus droplet (F+D) and finally the annular (A+D, A+RW, A+BTS) regimes as the gas rate is increased. Hand et al. [7 and 8] have given a detailed description of this progression in flow regime development and definitions of the patterns involved. Despite the fact that there are over one hundred models which have been developed to predict liquid hold-up, none have been shown to be universally useful, while only a handful have proven to be applicable to specific flow regimes [9, 10, 11 and 12]. One of the most intractable regimes to predict has been the stratified roll wave pattern where the liquid hold-up shows the most dramatic change with gas flow rate. It has been suggested that the momentum balance-type models, which give both hold-up and pressure drop prediction, can predict universally for all flow regimes but particularly in the case of the difficult stratified roll wave pattern. Donnelly [1] recently demonstrated that the momentum balance models experienced some difficulties in the prediction of this regime. Without going into lengthy details, these models differ in the assumed friction factor or shear stress on the surfaces within the pipe particularly at the liquid–gas interface. The Baker–Jardine model [13] when tested against the 0.0454 m i.d. data of Nguyen [2] exhibited a wide scatter for both liquid hold-up and pressure drop as shown in Fig. 1. The Andritsos–Hanratty model [14] gave better prediction of pressure drop but a wide scatter for liquid hold-up estimation (cf. Fig. 2) when tested against the 0.0935 m i.d. data of Hand [5]. The Spedding–Hand model [15], shown in Fig. 3 against the data of Hand [5], gave improved performance but was still unsatisfactory with the prediction of hold-up for stratified-type flows. The MARS model of Grolman [6] gave better prediction of hold-up (cf. Fig. 4) but deterioration in the estimation of pressure drop when tested against the data of Nguyen [2]. Thus no method is available that will accurately predict liquid hold-up across the whole range of flow patterns but particularly for the stratified plus roll wavy regime. The position is particularly unfortunate since the stratified-type regimes are perhaps the most predominant pattern found in multiphase lines.
Resumo:
Impulsively generated short-period fast magneto-acoustic wave trains, guided by solar and stellar coronal loops, are numerically modelled. In the developed stage of the evolution, the wave trains have a characteristic quasi-periodic signature. The quasi-periodicity results from the geometrical dispersion of the guided fast modes, determined by the transverse profile of the loop. A typical feature of the signature is a tadpole wavelet Spectrum: a narrow-spectrum tail precedes a broad-band head. The instantaneous period of the oscillations in the wave train decreases gradually with time. The period and the spectral amplitude evolution are shown to be determined by the steepness of the transverse density profile and the density contrast ratio in the loop. The propagating wave trains recently discovered with the Solar Eclipse Coronal Imaging System (SECIS) instrument are noted to have similar wavelet spectral features, which strengthens the interpretation of SECIS results as guided fast wave trains.
Resumo:
A coherent superposition of rotational states in D2 has been excited by nonresonant, ultrafast (12 fs), intense (2×1014 W cm-2) 800 nm laser pulses, leading to impulsive dynamic alignment. Field-free evolution of this rotational wave packet has been mapped to high temporal resolution by a time-delayed pulse, initiating rapid double ionization, which is highly sensitive to the angle of orientation of the molecular axis with respect to the polarization direction, . The detailed fractional revivals of the neutral D2 wave packet as a function of and evolution time have been observed and modeled theoretically.
Ionography of Submicron Foils and Nanostructures Using Ion Flow Generated in FS-Laser Cluster Plasma
Resumo:
A novel type of submicron ion radiography designed to image low-contrast objects, including nanofoils, membranes and biological structures, is proposed. It is based on femtosecond-laser-driven-cluster- plasma source of multicharged ions and polymer dosimeter film CR-39. The intense isotropic ion flow was produced by femtosecond Ti:Sa laser pulses with intensity similar to 4x10(17) W/cm(2) absorbed in the supersonic jet of the mixed He and CO2 gases. Two Focusing Spectrometers with Spatial Resolution (FSSR) were used to measure X-ray spectra of H-and He-like multicharged oxygen ions. The spectra testify that ions with energy more than 300 keV were radiated in different directions from the plasma source. High contrast ion radiography images were obtained for 2000 dpi metal mesh, 1 mu m polypropylene and 100 nm Zr foils as well as for the different biological objects. Images were recorded on a 1 mm thick CR-39 detector, placed in contact with back surface of the imaged samples at the distances 140 -160 mm from the ion source. The spatial resolution of the image no worse than 600 nm was provided. A difference in object thickness of 100 nm was very well resolved for both Zr and polymer foils. The ion radiography images recorded at different angles from the source, demonstrated almost uniform spatial distribution of ion with total number of 10(8) per shot. (C) 2009 WILEY-VCH Vertag GmbH & Co. KGaA, Weinheim
Resumo:
Bottom hinged Oscillating Wave Surge Converters (OWSCs) are efficient devices for extracting power from ocean waves. There is limited knowledge about wave slamming on such devices. This paper deals with numerical studies of wave slamming on an oscillating flap to investigate the mechanism of slamming events. In our model, the Navier–Stokes equations are discretized using the Finite Volume method with the Volume of Fluid (VOF) approach for interface capturing. Waves are generated by a flaptype wave maker in the numerical wave tank, and the dynamic mesh method is applied to model the motion of the oscillating flap. Basic mesh and time step refinement studies are performed. The flow characteristics in a slamming event are analysed based on numerical results. Various simulations with different flap densities, water depths and wave amplitudes are performed for a better understanding of the slamming.
Resumo:
Linear aerospike nozzles are envisaged as a possible means to improve launcher engine performance. One of the most interesting properties of these nozzles is the possibility of a good integration with the vehicle. To improve the knowledge of the flow-field and performance of aerospike nozzles, they are studied numerically, with particular attention to the differences between the basic two-dimensional nozzle, usually considered in the design phase, and the more realistic three-dimensional nozzle. The study considers also the effect of flight condition, which cannot be neglected because of the characteristic external expansion of aerospike nozzles.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.