981 resultados para Wave-current Interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relativistic distorted-wave Born approximation is used to calculate differential and total cross sections for inner shell ionization of neutral atoms by electron and positron impact. The target atom is described within the independent-electron approximation using the self-consistent Dirac-Fock-Slater potential. The distorting potential for the projectile is also set equal to the Dirac-Fock-Slater potential. For electrons, this guarantees orthogonality of all the orbitals involved and simplifies the calculation of exchange T-matrix elements. The interaction between the projectile and the target electrons is assumed to reduce to the instantaneous Coulomb interaction. The adopted numerical algorithm allows the calculation of differential and total cross sections for projectiles with kinetic energies ranging from the ionization threshold up to about ten times this value. Algorithm accuracy and stability are demonstrated by comparing differential cross sections calculated by our code with the distorting potential set to zero with equivalent results generated by a more robust code that uses the conventional plane-wave Born approximation. Sample calculation results are presented for ionization of K- and L-shells of various elements and compared with the available experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general formalism is set up to analyze the response of an arbitrary solid elastic body to an arbitrary metric gravitational wave (GW) perturbation, which fully displays the details of the interaction antenna wave. The formalism is applied to the spherical detector, whose sensitivity parameters are thereby scrutinized. A multimode transfer function is defined to study the amplitude sensitivity, and absorption cross sections are calculated for a general metric theory of GW physics. Their scaling properties are shown to be independent of the underlying theory, with interesting consequences for future detector design. The GW incidence direction deconvolution problem is also discussed, always within the context of a general metric theory of the gravitational field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian brain oscillates through three distinct global activity states: wakefulness, non-rapid eye movement (NREM) sleep and REM sleep. The regulation and function of these 'vigilance' or 'behavioural' states can be investigated over a broad range of temporal and spatial scales and at different levels of functional organization, i.e. from gene expression to memory, in single neurons, cortical columns or the whole brain and organism. We summarize some basic questions that have arisen from recent approaches in the quest for the functions of sleep. Whereas traditionally sleep was viewed to be regulated through top-down control mechanisms, recent approaches have emphasized that sleep is emerging locally and regulated in a use-dependent (homeostatic) manner. Traditional markers of sleep homeostasis, such as the electroencephalogram slow-wave activity, have been linked to changes in connectivity and plasticity in local neuronal networks. Thus waking experience-induced local network changes may be sensed by the sleep homeostatic process and used to mediate sleep-dependent events, benefiting network stabilization and memory consolidation. Although many questions remain unanswered, the available data suggest that sleep function will best be understood by an analysis which integrates sleep's many functional levels with its local homeostatic regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of different parts of the interaction potential on the microscopic behavior of simple liquid metals is investigated by molecular dynamics simulation. The role of the soft-core repulsive, short-range attractive, and long-range oscillatory forces on the properties of liquid lithium close to the triple point is analyzed by comparing the results from simulations of identical systems but truncating the potential at different distances. Special attention is paid to dynamic collective properties such as the dynamic structure factors, transverse current correlation functions, and transport coefficients. It is observed that, in general, the effects of the short-range attractive forces are important. On the contrary, the influence of the oscillatory long-range interactions is considerably less, being the most pronounced for the dynamic structure factor at long wavelengths. The results of this work suggest that the influence of the attractive forces becomes less significant when temperature and density increase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an analysis of the M-O chemical bonding in the binary oxides MgO, CaO, SrO, BaO, and Al2O3 based on ab initio wave functions. The model used to represent the local environment of a metal cation in the bulk oxide is an MO6 cluster which also includes the effect of the lattice Madelung potential. The analysis of the wave functions for these clusters leads to the conclusion that all the alkaline-earth oxides must be regarded as highly ionic oxides; however, the ionic character of the oxides decreases as one goes from MgO, almost perfectly ionic, to BaO. In Al2O3 the ionic character is further reduced; however, even in this case, the departure from the ideal, fully ionic, model of Al3+ is not exceptionally large. These conclusions are based on three measures, a decomposition of the Mq+-Oq- interaction energy, the number of electrons associated to the oxygen ions as obtained from a projection operator technique, and the analysis of the cation core-level binding energies. The increasing covalent character along the series MgO, CaO, SrO, and BaO is discussed in view of the existing theoretical models and experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical model based on Bowen and Holman [1989] is used to prove the existence of instabilities due to the presence of a second extremum of the background vorticity at the front side of the longshore current. The growth rate of the so-called frontshear waves depends primarily upon the frontshear but also upon the backshear and the maximum and the width of the current. Depending on the values of these parameters, either the frontshear or the backshear instabilities may dominate. Both types of waves have a cross-shore extension of the order of the width of the current, but the frontshear modes are localized closer to the coast than are the backshear modes. Moreover, under certain conditions both unstable waves have similar growth rates with close wave numbers and angular frequencies, leading to the possibility of having modulated shear waves in the alongshore direction. Numerical analysis performed on realistic current profiles confirm the behavior anticipated by the analytical model. The theory has been applied to a current profile fitted to data measured during the 1980 Nearshore Sediment Transport Studies experiment at Leadbetter Beach that has an extremum of background vorticity at the front side of the current. In this case and in agreement with field observations, the model predicts instability, whereas the theory based only on backshear instability fai led to do so.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n this work we analyze the behavior of complex information in Fresnel domain taking into account the limited capability to display complex transmittance values of current liquid crystal devices, when used as holographic displays. In order to do this analysis we compute the reconstruction of Fresnel holograms at several distances using the different parts of the complex distribution (real and imaginary parts, amplitude and phase) as well as using the full complex information adjusted with a method that combines two configurations of the devices in an adding architecture. The RMS error between the amplitude of these reconstructions and the original amplitude is used to evaluate the quality of the information displayed. The results of the error analysis show different behavior for the reconstructions using the different parts of the complex distribution and using the combined method of two devices. Better reconstructions are obtained when using two devices whose configurations densely cover the complex plane when they are added. Simulated and experimental results are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the interaction of vector mesons with the octet of stable baryons in the framework of the local hidden gauge formalism using a coupled channels unitary approach. We examine the scattering amplitudes and their poles, which can be associated to known J P = 1/2- , 3/2- baryon resonances, in some cases, or give predictions in other ones. The formalism employed produces doublets of degenerate J P = 1/2- , 3/2- states, a pattern which is observed experimentally in several cases. The findings of this work should also be useful to guide present experimental programs searching for new resonances, in particular in the strange sector where the current information is very poor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water withdrawal from Mediterranean reservoirs in summer is usually very high. Because of this, stratification is often continuous and far from the typical two-layered structure, favoring the excitation of higher vertical modes. The analysis of wind, temperature, and current data from Sau reservoir (Spain) shows that the third vertical mode of the internal seiche (baroclinic mode) dominated the internal wave field at the beginning of September 2003. We used a continuous stratification two-dimensional model to calculate the period and velocity distribution of the various modes of the internal seiche, and we calculated that the period of the third vertical mode is ;24 h, which coincides with the period of the dominating winds. As a result of the resonance between the third mode and the wind, the other oscillation modes were not excited during this period

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The interaction of microquasar jets with their environment can produce non-thermal radiation as in the case of extragalactic outflows impacting on their surroundings. Significant observational evidence of jet/medium interaction in galactic microquasars has been collected in the past few years, although little theoretical work has been done regarding the resulting non-thermal emission. Aims. In this work, we investigate the non-thermal emission produced in the interaction between microquasar jets and their environment, and the physical conditions for its production. Methods. We developed an analytical model based on those successfully applied to extragalactic sources. The jet is taken to be a supersonic and mildly relativistic hydrodynamical outflow. We focus on the jet/shocked medium structure in its adiabatic phase, and assume that it grows in a self-similar way. We calculate the fluxes and spectra of the radiation produced via synchrotron, inverse Compton, and relativistic bremsstrahlung processes by electrons accelerated in strong shocks. A hydrodynamical simulation is also performed to investigate further the jet interaction with the environment and check the physical parameters used in the analytical model. Results. For reasonable values of the magnetic field, and using typical values of the external matter density, the non-thermal particles could produce significant amounts of radiation at different wavelengths, although they do not cool primarily radiatively, but by adiabatic losses. The physical conditions of the analytical jet/medium interaction model are consistent with those found in the hydrodynamical simulation. Conclusions. Microquasar jet termination regions could be detectable at radio wavelengths for current instruments sensitive to ~arcminute scales. At X-ray energies, the expected luminosities are moderate, although the emitter is more compact than the radio one. The source may be detectable by XMM-Newton or Chandra, with 1-10 arcsec of angular resolution. The radiation at gamma-ray energies may be within the detection limits of the next generation of satellite and ground-based instruments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Thesis the interaction of an electromagnetic field and matter is studied from various aspects in the general framework of cold atoms. Our subjects cover a wide spectrum of phenomena ranging from semiclassical few-level models to fully quantum mechanical interaction with structured reservoirs leading to non-Markovian open quantum system dynamics. Within closed quantum systems, we propose a selective method to manipulate the motional state of atoms in a time-dependent double-well potential and interpret the method in terms of adiabatic processes. Also, we derive a simple wave-packet model, based on distributions of generalized eigenstates, explaining the finite visibility of interference in overlapping continuous-wave atom lasers. In the context of open quantum systems, we develop an unraveling of non-Markovian dynamics in terms of piecewise deterministic quantum jump processes confined in the Hilbert space of the reduced system - the non-Markovian quantum jump method. As examples, we apply it for simple 2- and 3-level systems interacting with a structured reservoir. Also, in the context of ion-cavity QED we study the entanglement generation based on collective Dicke modes in experimentally realistic conditions including photonic losses and an atomic spontaneous decay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to optimize the parameter setup for GTAW of aluminum using an AC rectangular wave output and continuous feeding. A series of welds was carried-out in an industrial joint, with variation of the negative and positive current amplitude, the negative and positive duration time, the travel speed and the feeding speed. Another series was carried out to investigate the isolate effect of the negative duration time and travel speed. Bead geometry aspects were assessed, such as reinforcement, penetration, incomplete fusion and joint wall bridging. The results showed that currents at both polarities are remarkably more significant than the respective duration times. It was also shown that there is a straight relationship between welding speed and feeding speed and this relationship must be followed for obtaining sound beads. A very short positive duration time is enough for arc stability achievement and when the negative duration time is longer than 5 ms its effect on geometry appears. The possibility of optimizing the parameter selection, despite the high inter-correlation amongst them, was demonstrate through a computer program. An approach to reduce the number of variables in this process is also presented.