942 resultados para Wave model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ballast fouling is created by the breakdown of aggregates or outside contamination by coal dust from coal trains, or from soil intrusion beneath rail track. Due to ballast fouling, the conditions of rail track can be deteriorated considerably depending on the type of fouling material and the degree of fouling. So far there is no comprehensive guideline available to identify the critical degree of fouling for different types of fouling materials. This paper presents the identification of degree of fouling and types of fouling using non-destructive testing, namely seismic surface-wave and ground penetrating radar (GPR) survey. To understand this, a model rail track with different degree of fouling has been constructed in Civil engineering laboratory, University of Wollongong, Australia. Shear wave velocity obtained from seismic survey has been employed to identify the degree of fouling and types of fouling material. It is found that shear wave velocity of fouled ballast increases initially, reaches optimum fouling point (OFP), and decreases when the fouling increases. The degree of fouling corresponding after which the shear wave velocity of fouled ballast will be smaller than that of clean ballast is called the critical fouling point (CFP). Ground penetrating radar with four different ground coupled antennas (500 MHz, 800 MHz, 1.6 GHz and 2.3 GHz) was also used to identify the ballast fouling condition. It is found that the 800 MHz ground coupled antenna gives a better signal in assessing the ballast fouling condition. Seismic survey is relatively slow when compared to GPR survey however it gives quantifiable results. In contrast, GPR survey is faster and better in estimating the depth of fouling. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, an ultrasonic wave propagation analysis in single-walled carbon nanotube (SWCNT) is re-studied using nonlocal elasticity theory, to capture the whole behaviour. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The revisited nonlocal elasticity calculation shows that the wavenumber tends to infinite at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. This frequency is termed as escape frequency. This behavior is observed only for axial and radial waves in SWCNT. It has been shown that the circumferential waves will propagate dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the explicit expressions of cut-off frequency depend on the nonlocal scaling parameter and the axial wavenumber. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTs is also discussed. The present results are compared with the corresponding results (for first mode) obtained from ab initio and 3-D elastodynamic continuum models. The acoustic phonon dispersion relation predicted by the present model is in good agreement with that obtained from literature. The results are new and can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, ultrasonic wave propagation analysis in fluid filled single-walled carbon nanotube (SWCNT) is studied using nonlocal elasticity theory. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. The fluid inside the SWCNT is assumed as water. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The presence of fluid in SWCNT alters the ultrasonic wave dispersion behavior. The wavenumber and wave velocity are smaller in presence of fluid as compared to the empty SWCNT. The nonlocal elasticity calculation shows that the wavenumber tends to reach the continuum limit at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. It has been shown that the circumferential. waves will propagate non-dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the cut-off frequency depend on the nonlocal scaling parameter and also on the density of the fluid inside the SWCNT, and the axial wavenumber, as the fluid becomes denser the cut-off frequency decreases. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTS filled with water is also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as E-f, the fibroblast resting-membrane potential, the fibroblast conductance G(f), and the MF gap-junctional coupling G(gap). Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as G(gap), G(f), and E-f, and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity CV decreases as a function of G(gap), for zero-sided and one-sided couplings; however, for two-sided coupling, CV decreases initially and then increases as a function of G(gap), and, eventually, we observe that conduction failure occurs for low values of G(gap). In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling G(gap) or E-f. Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider sound source mechanisms involving the acoustic and instability modes of dual-stream isothermal supersonic jets with the inner nozzle buried within an outer shroud-like nozzle. A particular focus is scattering into radiating sound waves at the shroud lip. For such jets, several families of acoustically coupled instability waves exist, beyond the regular vortical Kelvin-Helmholtz mode, with different shapes and propagation characteristics, which can therefore affect the character of the radiated sound. In our model, the coaxial shear layers are vortex sheets while the incident acoustic disturbances are the propagating shroud modes. The Wiener-Hopf method is used to compute their scattering at the sharp shroud edge to obtain the far-field radiation. The resulting far-field directivity quantifies the acoustic efficiency of different mechanisms, which is particularly important in the upstream direction, where the results show that the scattered sound is more intense than that radiated directly by the shear-layer modes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper an analysis of the kinetic theory of the continuous-wave flow chemical lasers(CWFCL) is presented with emphasis being laid on the effects of inhomogeneous broadeningon CWFCL's performance. The results obtained are applicable to the case where laser fre-quency is either coincident or incoincident with that of the eenter of the line shape. This rela-tion has been,compared with that of the rate model in common use. These two models are almostidentical as the broadening parameter η is larger than 1. The smaller the value of η, thegreater the difference between the results of these two models will be. For fixed η, the dif-ferences between fhe results of the two models increase with the increase of the frequencyshift parameter ξ. When η is about less than 0.2. the kinetic model can predict exactly the in-homogeneous broadening effects,while the rate model cannot.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report describes the working of National Centers for Coastal Ocean Service (NCCOS) Wave Exposure Model (WEMo) capable of predicting the exposure of a site in estuarine and closed water to local wind generated waves. WEMo works in two different modes: the Representative Wave Energy (RWE) mode calculates the exposure using physical parameters like wave energy and wave height, while the Relative Exposure Index (REI) empirically calculates exposure as a unitless index. Detailed working of the model in both modes and their procedures are described along with a few sample runs. WEMo model output in RWE mode (wave height and wave energy) is compared against data collected from wave sensors near Harkers Island, North Carolina for validation purposes. Computed results agreed well with the wave sensors data indicating that WEMo can be an effective tool in predicting local wave energy in closed estuarine environments. (PDF contains 31 pages)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A model of the auditory periphery assembled from analog network submodels of all the relevant anatomical structures is described. There is bidirectional coupling between networks representing the outer ear, middle ear and cochlea. A simple voltage source representation of the outer hair cells provides level-dependent basilar membrane curves. The networks are translated into efficient computational modules by means of wave digital filtering. A feedback unit regulates the average firing rate at the output of an inner hair cell module via a simplified modelling of the dynamics of the descending paths to the peripheral ear. This leads to a digital model of the entire auditory periphery with applications to both speech and hearing research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Asian tsunami of 26 December 2004 killed over 220 000 people and devastated coastal structures, including many thousands of traditional brick-built homes. This paper presents the results of model tests that compare the impact of a tsunami wave on a typical coastal house with that on a new tsunami resistant design developed in the USA and now built in Sri Lanka Digital images recorded during the test reveal how the tsunami wave passed through the new house design without damaging it but severely damaged the typical coastal house. Pressure sensor results also provided further insight into tsunami wave loading, indicating that the established Japanese method significantly underestimates maximum impact load.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the implementation of the Boussinesq-type model and extends its application to the tsunami wave runup on the clustered islands (multiple adjacent conical islands), in turn, an extensively validated two-dimensional Boussinesq-type model is employed to examine the interaction between a propagating solitary wave and multiple idealised conical islands, with particular emphasis on a combination effect of two adjustable parameters for spacing interval/diameter ratio between the adjacent conical islands, S/D, and the rotating angle of the structural configuration,θ on maximum soliton runup heights. An extensive parameter study concerning the combination effect of alteringθ and S/D on the maximum soliton runup with the multi-conical islands is subsequently carried out and the distributions of the maximum runup heights on each conical island are obtained and compared for the twin-island cases. The worst case study is performed for each case in respect of the enhancement in the maximum wave runup heights by the multi-conical islands. It is found that the nonlinear wave diffraction, reflection and refraction play a significant role in varying the maximum soliton runup heights on multiconical islands. The comparatively large maximum soliton runups are generally predicted for the merged and bottom mounted clusteredislands. Furthermore, the joints of the clustered-merged islands are demonstrated to suffer the most of the tsunami wave attack. The conical islands that position in the shadow regions behind the surrounding islands are found to withstand relatively less extreme wave impact. Although, these numerical investigations are considerable simplifications of the multi conical islands, they give a critical insight into certain important hydrodynamic characteristics of the interaction between an extreme wave event and a group of clustered conical islands, and thus providing a useful engineering guidance for extreme wave mitigation and coastal development. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).