995 resultados para Wave functions
Resumo:
We present an implementation of quantum annealing (QA) via lattice Green's function Monte Carlo (GFMC), focusing on its application to the Ising spin glass in transverse field. In particular, we study whether or not such a method is more effective than the path-integral Monte Carlo- (PIMC) based QA, as well as classical simulated annealing (CA), previously tested on the same optimization problem. We identify the issue of importance sampling, i.e., the necessity of possessing reasonably good (variational) trial wave functions, as the key point of the algorithm. We performed GFMC-QA runs using such a Boltzmann-type trial wave function, finding results for the residual energies that are qualitatively similar to those of CA (but at a much larger computational cost), and definitely worse than PIMC-QA. We conclude that, at present, without a serious effort in constructing reliable importance sampling variational wave functions for a quantum glass, GFMC-QA is not a true competitor of PIMC-QA.
Resumo:
Trajectory surface hopping (TSH) is one of the most widely used quantum-classical algorithms for nonadiabatic molecular dynamics. Despite its empirical effectiveness and popularity, a rigorous derivation of TSH as the classical limit of a combined quantum electron-nuclear dynamics is still missing. In this work, we aim to elucidate the theoretical basis for the widely used hopping rules. Naturally, we concentrate thereby on the formal aspects of the TSH. Using a Gaussian wave packet limit, we derive the transition rates governing the hopping process at a simple avoided level crossing. In this derivation, which gives insight into the physics underlying the hopping process, some essential features of the standard TSH algorithm are retrieved, namely (i) non-zero electronic transition rate ("hopping probability") at avoided crossings; (ii) rescaling of the nuclear velocities to conserve total energy; (iii) electronic transition rates linear in the nonadiabatic coupling vectors. The well-known Landau-Zener model is then used for illustration. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770280]
Resumo:
Aims. We present rates for all E1, E2, M1, and M2 transitions among the 295 fine-structure levels of the configurations 3d9, 3d84s, 3d74s2, 3d84p, and 3d74s4p, determined through an extensive configuration interaction calculation.
Methods. The CIV3 code developed by Hibbert and coworkers is used to determine for these levels configuration interaction wave functions with relativistic effects introduced through the Breit-Pauli approximation.
Results. Two different sets of calculations have been undertaken with different 3d and 4d functions to ascertain the effect of such variation. The main body of the text includes a representative selection of data, chosen so that key points can be discussed. Some analysis to assess the accuracy of the present data has been undertaken, including comparison with earlier calculations and the more limited range of experimental determinations. The full set of transition data is given in the supplementary material as it is very extensive.
Conclusions. We believe that the present transition data are the best currently available.
Resumo:
Effective collision strengths for electron-impact excitation of the phosphorus-like ion Cl III are presented for all fine-structure transitions among the levels arising from the lowest 23 LS states. The collisional cross sections are computed in the multichannel close-coupling R-matrix approximation, where sophisticated configuration-interaction wave functions are used to represent the target states. The 23 LS states are formed from the basis configurations 3s23p3, 3s3p4, 3s23p23d, and 3s23p24s, and correspond to 49 fine-structure levels, leading to a total possible 1176 fine-structure transitions. The effective collision strengths, obtained by averaging the electron collision strengths over a Maxwellian distribution of electron velocities, are tabulated in this paper for all 1176 transitions and for electron temperatures in the ranges T(K)=7500-25,000 and log T(K)=4.4-5.4. The former range encompasses the temperatures of particular importance for application to gaseous nebulae, while the latter range is more applicable to the study of solar and laboratory-type plasmas. © 2001 Academic Press.
Resumo:
All-electron partitioning of wave functions into products ^core^vai of core and valence parts in orbital space results in the loss of core-valence antisymmetry, uncorrelation of motion of core and valence electrons, and core-valence overlap. These effects are studied with the variational Monte Carlo method using appropriately designed wave functions for the first-row atoms and positive ions. It is shown that the loss of antisymmetry with respect to interchange of core and valence electrons is a dominant effect which increases rapidly through the row, while the effect of core-valence uncorrelation is generally smaller. Orthogonality of the core and valence parts partially substitutes the exclusion principle and is absolutely necessary for meaningful calculations with partitioned wave functions. Core-valence overlap may lead to nonsensical values of the total energy. It has been found that even relatively crude core-valence partitioned wave functions generally can estimate ionization potentials with better accuracy than that of the traditional, non-partitioned ones, provided that they achieve maximum separation (independence) of core and valence shells accompanied by high internal flexibility of ^core and Wvai- Our best core-valence partitioned wave function of that kind estimates the IP's with an accuracy comparable to the most accurate theoretical determinations in the literature.
Resumo:
Optimization of wave functions in quantum Monte Carlo is a difficult task because the statistical uncertainty inherent to the technique makes the absolute determination of the global minimum difficult. To optimize these wave functions we generate a large number of possible minima using many independently generated Monte Carlo ensembles and perform a conjugate gradient optimization. Then we construct histograms of the resulting nominally optimal parameter sets and "filter" them to identify which parameter sets "go together" to generate a local minimum. We follow with correlated-sampling verification runs to find the global minimum. We illustrate this technique for variance and variational energy optimization for a variety of wave functions for small systellls. For such optimized wave functions we calculate the variational energy and variance as well as various non-differential properties. The optimizations are either on par with or superior to determinations in the literature. Furthermore, we show that this technique is sufficiently robust that for molecules one may determine the optimal geometry at tIle same time as one optimizes the variational energy.
Resumo:
We developed the concept of split-'t to deal with the large molecules (in terms of the number of electrons and nuclear charge Z). This naturally leads to partitioning the local energy into components due to each electron shell. The minimization of the variation of the valence shell local energy is used to optimize a simple two parameter CuH wave function. Molecular properties (spectroscopic constants and the dipole moment) are calculated for the optimized and nearly optimized wave functions using the Variational Quantum Monte Carlo method. Our best results are comparable to those from the single and double configuration interaction (SDCI) method.
Resumo:
The one-electron reduced local energy function, t ~ , is introduced and has the property < tL)=(~>. It is suggested that the accuracy of SL reflects the local accuracy of an approximate wavefunction. We establish that <~~>~ <~2,> and present a bound formula, E~ , which is such that where Ew is Weinstein's lower bound formula to the ground state. The nature of the bound is not guaranteed but for sufficiently accurate wavefunctions it will yield a lower bound. ,-+ 1'S I I Applications to X LW Hz. and ne are presented.
Resumo:
Our objective is to develop a diffusion Monte Carlo (DMC) algorithm to estimate the exact expectation values, ($o|^|^o), of multiplicative operators, such as polarizabilities and high-order hyperpolarizabilities, for isolated atoms and molecules. The existing forward-walking pure diffusion Monte Carlo (FW-PDMC) algorithm which attempts this has a serious bias. On the other hand, the DMC algorithm with minimal stochastic reconfiguration provides unbiased estimates of the energies, but the expectation values ($o|^|^) are contaminated by ^, an user specified, approximate wave function, when A does not commute with the Hamiltonian. We modified the latter algorithm to obtain the exact expectation values for these operators, while at the same time eliminating the bias. To compare the efficiency of FW-PDMC and the modified DMC algorithms we calculated simple properties of the H atom, such as various functions of coordinates and polarizabilities. Using three non-exact wave functions, one of moderate quality and the others very crude, in each case the results are within statistical error of the exact values.
Resumo:
A generalization to the BTK theory is developed based on the fact that the quasiparticle lifetime is finite as a result of the damping caused by the interactions. For this purpose, appropriate self-energy expressions and wave functions are inserted into the strong coupling version of the Bogoliubov equations and subsequently, the coherence factors are computed. By applying the suitable boundary conditions to the case of a normal-superconducting interface, the probability current densities for the Andreev reflection, the normal reflection, the transmission without branch crossing and the transmission with branch crossing are determined. Accordingly the electric current and the differential conductance curves are calculated numerically for Nb, Pb, and Pb0.9Bi0.1 alloy. The generalization of the BTK theory by including the phenomenological damping parameter is critically examined. The observed differences between our approach and the phenomenological approach are investigated by the numerical analysis.
Resumo:
Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture.
Resumo:
Thèse réalisée en cotutelle avec l'Université Catholique de Louvain (Belgique)
Resumo:
Ce mémoire, composé d'un article en collaboration avec Monsieur Luc Vinet et Vincent X. Genest, est la suite du travail effectué sur les systèmes quantiques super-intégrables définis par des Hamiltoniens de type Dunkl. Plus particulièrement, ce mémoire vise l'analyse du problème de Coulomb-Dunkl dans le plan qui est une généralisation du système quantique de l'atome d'hydrogène impliquant des opérateurs de réflexion sur les variables x et y. Le modèle est défini par un potentiel en 1/r. Nous avons tout d'abord remarqué que l'Hamiltonien est séparable en coordonnées polaires et que les fonctions d'onde s'écrivent en termes de produits de polynômes de Laguerre généralisés et des harmoniques de Dunkl sur le cercle. L'algèbre générée par les opérateurs de symétrie nous a également permis de confirmer le caractère maximalement super-intégrable du problème de Coulomb-Dunkl. Nous avons aussi pu écrire explicitement les représentations de cette même algèbre. Nous avons finalement trouvé le spectre de l'énergie de manière algébrique.