976 resultados para Wave Equation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Attaining sufficient accuracy and efficiency of generalized screen propagator and improving the quality of input gathers are often problems of wave equation presack depth migration, in this paper,a high order formula of generalized screen propagator for one-way wave equation is proposed by using the asymptotic expansion of single-square-root operator. Based on the formula,a new generalized screen propagator is developed ,which is composed of split-step Fourier propagator and high order correction terms,the new generalized screen propagator not only improving calculation precision without sharply increasing the quantity of computation,facilitates the suitability of generalized screen propagator to the media with strong lateral velocity variation. As wave-equation prestack depth migration is sensitive to the quality of input gathers, which greatly affect the output,and the available seismic data processing system has inability to obtain traveltimes corresponding to the multiple arrivals, to estimate of great residual statics, to merge seismic datum from different projects and to design inverse Q filter, we establish difference equations with an embodiment of Huygens’s principle for obtaining traveltimes corresponding to the multiple arrivals,bring forward a time variable matching filter for seismic datum merging by using the fast algorithm called Mallat tree for wavelet transformations, put forward a method for estimation of residual statics by applying the optimum model parameters estimated by iterative inversion with three organized algorithm,i.e,the CMP intertrace cross-correlation algorithm,the Laplacian image edge extraction algorithm,and the DFP algorithm, and present phase-shift inverse Q filter based on Futterman’s amplitude and phase-velocity dispersion formula and wave field extrapolation theory. All of their numerical and real data calculating results shows that our theory and method are practical and efficient. Key words: prestack depth migration, generalized screen propagator, residual statics,inverse Q filter ,traveltime,3D seismic datum mergence

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theoretical research, laboratory test and field observation show that most of sediment rock has anisotropic features. It will produce some notable errors when applying isotropic methods such as prestack depth migration and velocity analysis to dada acquired under anisotropic condition; it also has a bad effect on geologic interpretation. Generally speaking, the vertical transverse isotropic media is a good approximation to geologic structure, thus it has an important realistic meaning for anisotropic prestack depth migration theory researching and precise complex geologic imaging if considering anisotropic effect of seismic wave propagation. There are two indispensable parts in prestack depth migration of realistic records, one is proper prestack depth migration algorithm, and the other is velocity analysis using prestack seismic data. The paper consists of the two aspects. Based on implicit finite difference research proposed by Dietrich Ristow et al (1997) about VTI media prestack depth migration, the paper proposed split-step Fourier prestack depth migration algorithm (VTISSF) and Fourier finite difference algorithm (VTIFFD) based on wave equation for VTI media, program are designed and the depth migration method are tested using synthetic model. The result shows that VTISSF is a stable algorithm, it generally gets a good result if the reflector dip is not very steep, while undermigration phenomena appeared in steep dips case; the VTIFFD algorithm bring us better result in steep dips with lower efficiency and frequency dispersion. For anisotropic prestack depth migration velocity analysis of VTI media, The paper discussed the basic hypothesis of VTI model in velocity analysis algorithm, basis of anisotropic prestack depth migration velocity analysis and travel time table calculation of VTI media in integral prestack depth migration. Then , analyzed the P-wave common imaging gather in the case of homogeneous velocity and vertically variable velocity . studied the residual correction in common imaging gather produced by media parameter error, analyzed the condition of flat event and correct depth in common imaging gather . In this case, the anisotropic model parameter vector is , is vertical velocity of a point at top surface, is vertical velocity gradient, and are anisotropic parameter. We can get vertical velocity gradient from seismic data; then the P-wave common imaging gather of VTI media whose velocity varies in vertical and horizontal direction, the relationship between media parameter and event residual time shift of common image gather are studied. We got the condition of flattening common imaging gather with correct depth. In this case the anisotropic model parameter vector is , is velocity gradient in horizontal direction. As a result, the vertical velocity grads can be decided uniquely, but horizontal velocity grads and anisotropic parameter can’t be distinguished if no priori information available, our method is to supply parameter by velocity scanning; then, as soon as is supplied we can get another four parameters of VTI media from seismic data. Based on above analysis, the paper discussed the feasibility of migration velocity analysis in vertically and horizontally varied VTI media, synthetic record of three models are used to test the velocity analysis method . Firstly, anisotropic velocity analysis test is done using a simple model with one block, then we used a model with multiple blocks, thirdly, we analyzed the anisotropic velocity using a part of Marmousi model. The model results show that this velocity analysis method is feasible and correct.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exploration study proves that East sea shelf basin embeds abundant hydrocarbon resources. However, the exploration knowledge of this area is very low. Many problems in exploration are encountered here. One of them is that the gas reservoir of this area, with rapid lateral variation, is deeply buried. Correlation of Impendence between sandstone, gas sand and shale is very poor. Another problem is that the S/N ratio of the seismic data is very low and multiples are relatively productive which seriously affect reservoir identification. Resolution of the seismic data reflected from 2500-3000 meter is rather low, which seriously affects the application of hydrocarbon direct identification (HDI) technology. This research established a fine geological & geophysical model based on drilling、well logging、geology&seismic data of East sea Lishui area. A Q value extraction method from seismic data is proposed. With this method, Q value inversion from VSP data and seismic data is performed to determine the subsurface absorption of this area. Then wave propagation and absorption rule are in control. Field acquisition design can be directed. And at the same time, with the optimization of source system, the performance of high resolution seismic acquisition layout system is enhanced. So the firm foundation is ensured for east sea gas reservoir exploration. For solving the multiple and amplitude preserving problems during the seismic data processing, wave equation pre-stack amplitude preservation migration and wave equation feedback iteratively multiple attenuation technologies are developed. Amplitude preservation migration technology can preserve the amplitude of imaging condition and wave-field extrapolation. Multiple removing technology is independent of seismic source wavelet and velocity model, which avoiding the weakness of Delft method. Aiming at the complicated formation condition of the gas reservoir in this area, with dissecting typical hydrocarbon reservoir, a series of pertinent advanced gas reservoir seismic identification technologies such as petrophysical properties analyzing and seismic modeling technology、pre-stack/post-stack joint elastic inversion, attribute extraction technology based on seismic non-stationary signal theory and formation absorption characteristic and so on are studied and developed. Integrated analysis of pre-stack/post-stack seismic data, reservoir information, rock physics and attribute information is performed. And finally, a suit of gas reservoir identification technology is built, according to the geological and geophysical characteristics of this area. With developed innovative technologies, practical application and intergrated interpretation appraisal researches are carried out in Lishui 36-1.The validity of these technologies is tested and verified. Also the hydrocarbon charging possibility and position of those three east sea gas exploration targets are clearly pointed out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In China and world, more than half the recent basin discovered reserves involve lithologic hydrocarbon reservoir reserves. The major target for further hydrocarbon basin exploration is the subtle reservoir. The Liaodong Bay prospect is much important in Bohai Sea, which includes Liaoxi low uplift, Liaodong uplift, Liaoxi sag and Liaozhong sag. After dozens years’ exploration in Liaodong Bay, few unexplored big-and-middle-sized favorable structural traps are remained and most of the stock structure targets are bad for fragmentary. Thus seeking for new prospect area and making a breakthrough, have become the unique way to relieve the severe exploration condition in Liaodong Bay. Technique Route Based on the petrophysical property of target area, the seismic forward inference of typical subtle trap model is expanded with analysis of logging, seismic and geologic data. According to petrophysical characteristics and forward inference and research on seismic response of actual seismic data in target area, the optimization of geophysical technique is used in subtle trap identification and the geophysical identification technique system of subtle reservoir is formed. The Key Research ① Petrophysical Model The petrophysical parameter is the basic parameter for seismic wave simulation. The seismic response difference of rocks bearing different fluids is required. With the crossplot of log data, the influence of petrophysical parameters on rock elastic properties of target area is analyzed, such as porosity, shale index, fluid property and saturation. Based on the current research on Biot-Gassmann and Kuster-Toksoz model, the petrophysical parameter calculator program which can be used for fluid substitution is established. ② S-wave evaluation based on conventional log data The shear velocity is needed during forward inference of AVO or other elastic wave field. But most of the recent conventional log data is lack of shear wave. Thus according to the research on petrophysical model, the rock S-wave parameter can be evaluated from conventional log data with probability inverse method. ③ AVO forward modeling based on well data For 6 wells in JZ31-6 block and 9 wells in LD22-1 block, the AVO forward modeling recording is made by log curve. The classification of AVO characteristics in objective interval is made by the lithologic information. ④ The 2D parameter model building and forward modeling of subtle hydrocarbon trap in target area. According to the formation interpretation of ESS03D seismic area, the 2D parameter model building and seismic wave field forward modeling are carried on the given and predicted subtle hydrocarbon trap with log curve. ⑤ The lithology and fluid identification of subtle trap in target area After study the seismic response characteristics of lithology and fluid in given target area, the optimization of geophysical technique is used for lithology identification and fluid forecast. ⑥The geophysical identification technique system of subtle reservoir The Innovative Points of this Paper ① Based on laboratory measurement and petrophysical model theory, the rock S-wave parameter can be evaluated from conventional log data with probability inverse method. Then the fluid substitution method based on B-G and K-T theory is provided. ② The method and workflow for simulating seismic wave field property of subtle hydrocarbon trap are established based on the petrophysical model building and forward modeling of wave equation. ③ The description of subtle trap structural feature is launched. According to the different reflection of frequency wave field structural attribute, the fluid property of subtle trap can be identified by wave field attenuation attribute and absorption analysis. ④ It’s the first time to identify subtle trap by geophysical technique and provide exploration drilling well location. ⑤ The technique system of subtle reservoir geophysical identification is formed to provide available workflow and research ideas for other region of interest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seismic Numerical Modeling is one of bases of the Exploratory Seismology and Academic Seismology, also is a research field in great demand. Essence of seismic numerical modeling is to assume that structure and parameters of the underground media model are known, simulate the wave-field and calculate the numerical seismic record that should be observed. Seismic numerical modeling is not only a means to know the seismic wave-field in complex inhomogeneous media, but also a test to the application effect by all kinds of methods. There are many seismic numerical modeling methods, each method has its own merits and drawbacks. During the forward modeling, the computation precision and the efficiency are two pivotal questions to evaluate the validity and superiority of the method. The target of my dissertation is to find a new method to possibly improve the computation precision and efficiency, and apply the new forward method to modeling the wave-field in the complex inhomogeneous media. Convolutional Forsyte polynomial differentiator (CFPD) approach developed in this dissertation is robust and efficient, it shares some of the advantages of the high precision of generalized orthogonal polynomial and the high speed of the short operator finite-difference. By adjusting the operator length and optimizing the operator coefficient, the method can involve whole and local information of the wave-field. One of main tasks of the dissertation is to develop a creative, generalized and high precision method. The author introduce convolutional Forsyte polynomial differentiator to calculate the spatial derivative of seismic wave equation, and apply the time staggered grid finite-difference which can better meet the high precision of the convolutional differentiator to substitute the conventional finite-difference to calculate the time derivative of seismic wave equation, then creating a new forward method to modeling the wave-field in complex inhomogeneous media. Comparing with Fourier pseudo-spectral method, Chebyshev pseudo-spectral method, staggered- grid finite difference method and finite element method, convolutional Forsyte polynomial differentiator (CFPD) method has many advantages: 1. Comparing with Fourier pseudo-spectral method. Fourier pseudo-spectral method (FPS) is a local operator, its results have Gibbs effects when the media parameters change, then arose great errors. Therefore, Fourier pseudo-spectral method can not deal with special complex and random heterogeneous media. But convolutional Forsyte polynomial differentiator method can cover global and local information. So for complex inhomogeneous media, CFPD is more efficient. 2. Comparing with staggered-grid high-order finite-difference method, CFPD takes less dots than FD at single wave length, and the number does not increase with the widening of the studying area. 3. Comparing with Chebyshev pseudo-spectral method (CPS). The calculation region of Chebyshev pseudo-spectral method is fixed in , under the condition of unchangeable precision, the augmentation of calculation is unacceptable. Thus Chebyshev pseudo-spectral method is inapplicable to large area. CFPD method is more applicable to large area. 4. Comparing with finite element method (FE), CFPD can use lager grids. The other task of this dissertation is to study 2.5 dimension (2.5D) seismic wave-field. The author reviews the development and present situation of 2.5D problem, expatiates the essentiality of studying the 2.5D problem, apply CFPD method to simulate the seismic wave-field in 2.5D inhomogeneous media. The results indicate that 2.5D numerical modeling is efficient to simulate one of the sections of 3D media, 2.5D calculation is much less time-consuming than 3D calculation, and the wave dispersion of 2.5D modeling is obviously less than that of 3D modeling. Question on applying time staggered-grid convolutional differentiator based on CFPD to modeling 2.5D complex inhomogeneous media was not studied by any geophysicists before, it is a fire-new creation absolutely. The theory and practices prove that the new method can efficiently model the seismic wave-field in complex media. Proposing and developing this new method can provide more choices to study the seismic wave-field modeling, seismic wave migration, seismic inversion, and seismic wave imaging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geophysical inversion is a theory that transforms the observation data into corresponding geophysical models. The goal of seismic inversion is not only wave velocity models, but also the fine structures and dynamic process of interior of the earth, expanding to more parameters such as density, aeolotropism, viscosity and so on. As is known to all, Inversion theory is divided to linear and non-linear inversion theories. In rencent 40 years linear inversion theory has formed into a complete and systematic theory and found extensive applications in practice. While there are still many urgent problems to be solved in non-linear inversion theory and practice. Based on wave equation, this dissertation has been mainly involved in the theoretical research of several non-linear inversion methods: waveform inversion, traveltime inversion and the joint inversion about two methods. The objective of gradient waveform inversion is to find a geologic model, thus synthetic seismograms generated by this geologic model are best fitted to observed seismograms. Contrasting with other inverse methods, waveform inversion uses all characteristics of waveform and has high resolution capacity. But waveform inversion is an interface by interface method. An artificial parameter limit should be provided in each inversion iteration. In addition, waveform information will tend to get stuck in local minima if the starting model is too far from the actual model. Based on velocity scanning in traditional seismic data processing, a layer-by-layer waveform inversion method is developed in this dissertation to deal with weaknesses of waveform inversion. Wave equation is used to calculate the traveltime and derivative (perturbation of traveltime with respect to velocity) in wave-equation traveltime inversion (WT). Unlike traditional ray-based travetime inversion, WT has many advantages. No ray tracing or traveltime picking and no high frequency assumption is necessary and good result can be got while starting model is far from real model. But, comparing with waveform inversion, WT has low resolution. Waveform inversion and WT have complementary advantages and similar algorithm, which proves that the joint inversion is a better inversion method. And another key point which this dissertation emphasizes is how to give fullest play to their complementary advantages on the premise of no increase of storage spaces and amount of calculation. Numerical tests are implemented to prove the feasibility of inversion methods mentioned above in this dissertation. Especially for gradient waveform inversion, field data are inversed. This field data are acquired by our group in Wali park and Shunyi district. Real data processing shows there are many problems for waveform inversion to deal with real data. The matching of synthetic seismograms with observed seismograms and noise cancellation are two primary problems. In conclusion, on the foundation of the former experiences, this dissertation has implemented waveform inversions on the basis of acoustic wave equation and elastic wave equation, traveltime inversion on the basis of acoustic wave equation and traditional combined waveform traveltime inversion. Besides the traditional analysis of inversion theory, there are two innovations: layer by layer inversion of seimic reflection data inversion and rapid method for acoustic wave-equation joint inversion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An high-resolution prestack imaging technique of seismic data is developed in this thesis. By using this technique, the reflected coefficients of sheet sands can be gained in order to understand and identify thin oil reservoirs. One-way wave equation based migration methods can more accurately model seismic wave propagation effect such as multi-arrivals and obtain almost correct reflected energy in the presence of complex inhomogeneous media, and therefore, achieve more superiorities in imaging complex structure. So it is a good choice to apply the proposed high-resolution imaging to the presatck depth migration gathers. But one of the main shorting of one-way wave equation based migration methods is the low computational efficiency, thus the improvement on computational efficiency is first carried out. The method to improve the computational efficiency of prestack depth migration is first presented in this thesis, that is frequency-dependent varying-step depth exploration scheme plus a table-driven, one-point wavefield interpolation technology for wave equation based migration methods; The frequency-dependent varying-step depth exploration scheme reduces the computational cost of wavefield depth extrapolation, and the a table-driven, one-point wavefield interpolation technology reconstructs the extrapolated wavefield with an equal, desired vertical step with high computational efficiency. The proposed varying-step depth extrapolation plus one-point interpolation scheme results in 2/3 reduction in computational cost when compared to the equal-step depth extrapolation of wavefield, but gives the almost same imaging. The frequency-dependent varying-step depth exploration scheme is presented in theory by using the optimum split-step Fourier. But the proposed scheme can also be used by other wave equation based migration methods of the frequency domain. The proposed method is demonstrated by using impulse response, 2-D Marmousi dataset, 3-D salt dataset and the 3-D field dataset. A method of high-resolution prestack imaging is presented in the 2nd part of this thesis. The seismic interference method to solve the relative reflected coefficients is presented. The high-resolution imaging is obtained by introducing a sparseness- constrained least-square inversion into the reflected coefficient imaging. Gaussian regularization is first imposed and a smoothed solution is obtained by solving equation derived from the least-square inversion. Then the Cauchy regularization is introducing to the least-square inversion , the sparse solution of relative reflected coefficients can be obtained, that is high-resolution solution. The proposed scheme can be used together with other prestack imaging if the higher resolution is needed in a target zone. The seismic interference method in theory and the solution to sparseness-constrained least-square inversion are presented. The proposed method is demonstrated by synthetic examples and filed data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in 3D exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which keeps the ability of finite-differenc method in dealing with laterally varing media and inherits the predominance of the phase-screen method in stablility and efficiency. In this thesis, the accuracy of the FFD operator is highly improved by using simulated annealing algorithm. This method takes the extrapolation step and band width into account, which is more suitable to various band width and discrete scale than the commonely-used optimized method based on velocity contrast alone. In this thesis, the FFD method is extended to viscoacoustic modeling. Based on one-way wave equation, the presented method is implemented in frequency domain; thus, it is more efficient than two-way methods, and is more convenient than time domain methods in handling attenuation and dispersion effects. The proposed method can handle large velocity contrast and has a high efficiency, which is helpful to further research on earth absorption and seismic resolution. Starting from the frequency dispersion of the acoustic VTI wave equation, this thesis extends the FFD migration method to the acoustic VTI media. Compared with the convetional FFD method, the presented method has a similar computational efficiency, and keeps the abilities of dealing with large velocity contrasts and steep dips. The numerical experiments based on the SEG salt model show that the presented method is a practical migration method for complex acoustical VTI media, because it can handle both large velocity contrasts and large anisotropy variations, and its accuracy is relatively high even in strong anisotropic media. In 3D case, the two-way splitting technique of FFD operator causes artificial azimuthal anisotropy. These artifacts become apparent with increasing dip angles and velocity contrasts, which prevent the application of the FFD method in 3D complex media. The current methods proposed to reduce the azimuthal anisotropy significantly increase the computational cost. In this thesis, the alternating-direction-implicit plus interpolation scheme is incorporated into the 3D FFD method to reduce the azimuthal anisotropy. By subtly utilizing the Fourier based scheme of the FFD method, the improved fast algorithm takes approximately no extra computation time. The resulting operator keeps both the accuracy and the efficiency of the FFD method, which is helpful to the inhancements of both the accuracy and the efficiency for prestack depth migration. The general comparison is presented between the FFD operator and the generalized-screen operator, which is valuable to choose the suitable method in practice. The percentage relative error curves and migration impulse responses show that the generalized-screen operator is much sensiutive to the velocity contrasts than the FFD operator. The FFD operator can handle various velocity contrasts, while the generalized-screen operator can only handle some range of the velocity contrasts. Both in large and weak velocity contrasts, the higher order term of the generalized-screen operator has little effect on improving accuracy. The FFD operator is more suitable to large velocity contrasts, while the generalized-screen operator is more suitable to middle velocity contrasts. Both the one-way implicit finite-difference migration and the two-way explicit finite-differenc modeling have been implemented, and then they are compared with the corresponding FFD methods respectively. This work gives a reference to the choosen of proper method. The FFD migration is illustrated to be more attractive in accuracy, efficiency and frequency dispertion than the widely-used implicit finite-difference migration. The FFD modeling can handle relatively coarse grids than the commonly-used explicit finite-differenc modeling, thus it is much faster in 3D modeling, especially for large-scale complex media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In exploration geophysics,velocity analysis and migration methods except reverse time migration are based on ray theory or one-way wave-equation. So multiples are regarded as noise and required to be attenuated. It is very important to attenuate multiples for structure imaging, amplitude preserving migration. So it is an interesting research in theory and application about how to predict and attenuate internal multiples effectively. There are two methods based on wave-equation to predict internal multiples for pre-stack data. One is common focus point method. Another is inverse scattering series method. After comparison of the two methods, we found that there are four problems in common focus point method: 1. dependence of velocity model; 2. only internal multiples related to a layer can be predicted every time; 3. computing procedure is complex; 4. it is difficult to apply it in complex media. In order to overcome these problems, we adopt inverse scattering series method. However, inverse scattering series method also has some problems: 1. computing cost is high; 2. it is difficult to predict internal multiples in the far offset; 3. it is not able to predict internal multiples in complex media. Among those problems, high computing cost is the biggest barrier in field seismic processing. So I present 1D and 1.5D improved algorithms for reducing computing time. In addition, I proposed a new algorithm to solve the problem which exists in subtraction, especially for surface related to multiples. The creative results of my research are following: 1. derived an improved inverse scattering series prediction algorithm for 1D. The algorithm has very high computing efficiency. It is faster than old algorithm about twelve times in theory and faster about eighty times for lower spatial complexity in practice; 2. derived an improved inverse scattering series prediction algorithm for 1.5D. The new algorithm changes the computing domain from pseudo-depth wavenumber domain to TX domain for predicting multiples. The improved algorithm demonstrated that the approach has some merits such as higher computing efficiency, feasibility to many kinds of geometries, lower predictive noise and independence to wavelet; 3. proposed a new subtraction algorithm. The new subtraction algorithm is not used to overcome nonorthogonality, but utilize the nonorthogonality's distribution in TX domain to estimate the true wavelet with filtering method. The method has excellent effectiveness in model testing. Improved 1D and 1.5D inverse scattering series algorithms can predict internal multiples. After filtering and subtracting among seismic traces in a window time, internal multiples can be attenuated in some degree. The proposed 1D and 1.5D algorithms have demonstrated that they are effective to the numerical and field data. In addition, the new subtraction algorithm is effective to the complex theoretic models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation starts from the point that the prestack time migration can been considered as an approximation of the prestack depth migration, giving a wave equation based prestack time migration approach. The new approach includes: analytically getting the travel time and amplitude based on the one way wave equation and the stationary-phase theory, using ‘spread’ imaging method and imaging following the prestack depth migration, updating the velocity model with respect to the flats of the events in CRP gathers. Based on this approach, we present a scheme that can image land seismic data without field static correction. We may determine the correct near surface velocities and stack velocities by picking up the residual correction of the events in the CRP gathers. We may get the rational migration section based on the updated velocities and correct the migration section from a floating datum plane to a universal datum plane. We may adaptively determine the migration aperture according to the dips of the imaging structures. This not only speed up the processing, but may suppress the migration noise produce by the extra aperture. We adopt the deconvolution imaging condition of wave equation migration. It may partially compensate the geometric divergence. In this scheme, we use the table-driven technique which may enhance the computational efficiency. If the subsurface is much more complicated, it may be impossible to distinguish the DTS curve. To solve this problem, we proposed a technique to determine the appropriate range of the DTS curve. We synthesize DTS panel in this range using different velocities and depths, and stack the amplitude around the zero time. Determine the correct velocity and location of the considered grid point by comparing the values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aiming at solving the seismic imaging difficulty in complex area, the static correction methods and the migration imaging techniques taking the anisotropy into account are studied in this dissertation. To solve the static correction problems, a new tomography inversion approach is presented which takes use of the apparent slowness and apparent velocity and inverts both head and diving waves over the complete offset ranges. This approach is also taken practice to the practical seismic data processing of south areas of China and gets ideal effects. There are obvious differences between the actual statics and the statics based on the surface consistency hypothesis. In this dissertation, the exact differences formula is derived. The wave-eqation datuming method based on a single shot gather and the hybrid zero-offset wave-equation datuming algorithm based on f-x domain and f-k domain are presented at the same time. Further more, some forward modelings are made and tested. These methods are also put into practical seismic data processing and good results are made. In this dissertation, the true amplitude Kirchhoff pre-stack time migration fomula in VTI media is presented. The high-dense bispectral scanning technique based on the anelliptical time-shifted hyperbola and the geostatistical filtering are adopted to extract the anellipticity parameter. Simultaneously, combined with the practical seismic data imaging, the anisotropic pre-stack time migration flow is proposed and good processing results are made.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary approaches for people to understand the inner properties of the earth and the distribution of the mineral resources are mainly coming from surface geology survey and geophysical/geochemical data inversion and interpretation. The purpose of seismic inversion is to extract information of the subsurface stratum geometrical structures and the distribution of material properties from seismic wave which is used for resource prospecting, exploitation and the study for inner structure of the earth and its dynamic process. Although the study of seismic parameter inversion has achieved a lot since 1950s, some problems are still persisting when applying in real data due to their nonlinearity and ill-posedness. Most inversion methods we use to invert geophysical parameters are based on iterative inversion which depends largely on the initial model and constraint conditions. It would be difficult to obtain a believable result when taking into consideration different factors such as environmental and equipment noise that exist in seismic wave excitation, propagation and acquisition. The seismic inversion based on real data is a typical nonlinear problem, which means most of their objective functions are multi-minimum. It makes them formidable to be solved using commonly used methods such as general-linearization and quasi-linearization inversion because of local convergence. Global nonlinear search methods which do not rely heavily on the initial model seem more promising, but the amount of computation required for real data process is unacceptable. In order to solve those problems mentioned above, this paper addresses a kind of global nonlinear inversion method which brings Quantum Monte Carlo (QMC) method into geophysical inverse problems. QMC has been used as an effective numerical method to study quantum many-body system which is often governed by Schrödinger equation. This method can be categorized into zero temperature method and finite temperature method. This paper is subdivided into four parts. In the first one, we briefly review the theory of QMC method and find out the connections with geophysical nonlinear inversion, and then give the flow chart of the algorithm. In the second part, we apply four QMC inverse methods in 1D wave equation impedance inversion and generally compare their results with convergence rate and accuracy. The feasibility, stability, and anti-noise capacity of the algorithms are also discussed within this chapter. Numerical results demonstrate that it is possible to solve geophysical nonlinear inversion and other nonlinear optimization problems by means of QMC method. They are also showing that Green’s function Monte Carlo (GFMC) and diffusion Monte Carlo (DMC) are more applicable than Path Integral Monte Carlo (PIMC) and Variational Monte Carlo (VMC) in real data. The third part provides the parallel version of serial QMC algorithms which are applied in a 2D acoustic velocity inversion and real seismic data processing and further discusses these algorithms’ globality and anti-noise capacity. The inverted results show the robustness of these algorithms which make them feasible to be used in 2D inversion and real data processing. The parallel inversion algorithms in this chapter are also applicable in other optimization. Finally, some useful conclusions are obtained in the last section. The analysis and comparison of the results indicate that it is successful to bring QMC into geophysical inversion. QMC is a kind of nonlinear inversion method which guarantees stability, efficiency and anti-noise. The most appealing property is that it does not rely heavily on the initial model and can be suited to nonlinear and multi-minimum geophysical inverse problems. This method can also be used in other filed regarding nonlinear optimization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As active electromagnetic method, field data of CSAMT method follow the equation of diffusion. Propagting in solid earth media, diffusion EM signal has strong attenuation and dispersion, otherwise seismic wave shows weak attenuation and dispersion, therefore the resolution power of CSAMT method is not better than seismic reflection method. However, there is consistence and similarity between EM signal and seismic wave in wave equation, we can apply Kirchhoff integral migration technique, a proven one in seismic method in time domain, to carry out seduo-seismic processing for CSAMT signal in frequency domain so that the attenuation and dispersion could be made compensated in some extent, and the resolution power and interpretation precision of active EM wave could be improved. Satisfying passive homogeneous Helmholtz quation, we proceed with Green theorem and combine the active inhomogenous Helmholtz quation, the Kirchhoff integral formula could be derived. Given practical problems, if we only consider the surface integral value, and assume that the intergral value in other interface is zero, combined with Green theorem in uniform half space, the expression could be simplified, and we can obtain frequency-domain Kirchhoff integral formula in surface, which is also called downward continuation of EM field in frequency domain. With image conditions and energy compensation considered, in order to get image conditions in time domain Fourier inverse transformation in frequency domain can be performed, so we can formulate the active Kirchhoff integral migration expression. At first, we construct relative stratified model, with different frequency series taken into account, then we change the distances between transmitter and reciever, the EM response can be obtained. Analyzing the EM properties, we can clarify near and far zone that can instruct us to carry out transmitter layout in practical application. Combined with field data surveyed in far zone, We perform Kirchhoff integral migration and compare the results with model to interpret. Secondly, with far field EM data, we apply TM mode to get EM response of given 2D model, then apply Kirchhoff integral migration on modelling data and interpret the results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Along with the widespread and in-depth applications in petroleum prospecting and development, the seismic modeling and migration technologies are proposed with a higher requirement by oil industrial, and the related practical demand is getting more and more urgent. Based on theories of modeling and migration methods for wave equation, both related with velocity model, I thoroughly research and develop some methods for the goal of highly effective and practical in this dissertation. In the first part, this dissertation probes into the layout designing by wave equations modeling, focusing on the target-oriented layout designing method guided by wave equation modeling in complicated structure areas. It is implemented by using the fourth order staggered grid finite difference (FD) method in velocity-stress 2D acoustic wave equations plus perfectly matched layer (PML) absorbing boundary condition. To design target-oriented layout: (a) match the synthetic record on the surface with events of subsurface structures by analyzing the snapshots of theoretical model; (b) determine the shot-gather distance by tracking the events of target areas and measuring the receiving range when it reaches the surface; (c) restrict the range of valid shot-gather distance by drawing seismic windows in single shot records; (d) choose the best trace distance by comparing the resolution of prospecting targets from the simulated records with different trace distance. Eventually, we obtained the observation system parameters, which achieve the design requirements. In the second part, this dissertation presents the practical method to improve the 3D Fourier Finite Difference (FFD) migration, and carefully analyzes all the factors which influence 3D FFD migration’s efficiency. In which, one of the most important parameters of migration is the extrapolating step. This dissertation presents an efficient 3D FFD migration algorithm, which use FFD propagator to extrapolate wavefields over big layers, and use Born-Kirchhoff interpolator to image wavefields over small layers between the big ones. Finally, I show the effectiveness of this hybrid migration method by comparing migration results from 3D SEG/EAGE model with different methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last several decades, due to the fast development of computer, numerical simulation has been an indispensable tool in scientific research. Numerical simulation methods which based on partial difference operators such as Finite Difference Method (FDM) and Finite Element Method (FEM) have been widely used. However, in the realm of seismology and seismic prospecting, one usually meets with geological models which have piece-wise heterogeneous structures as well as volume heterogeneities between layers, the continuity of displacement and stress across the irregular layers and seismic wave scattering induced by the perturbation of the volume usually bring in error when using conventional methods based on difference operators. The method discussed in this paper is based on elastic theory and integral theory. Seismic wave equation in the frequency domain is transformed into a generalized Lippmann-Schwinger equation, in which the seismic wavefield contributed by the background is expressed by the boundary integral equation and the scattering by the volume heterogeneities is considered. Boundary element-volume integral method based on this equation has advantages of Boundary Element Method (BEM), such as reducing one dimension of the model, explicit use the displacement and stress continuity across irregular interfaces, high precision, satisfying the boundary at infinite, etc. Also, this method could accurately simulate the seismic scattering by the volume heterogeneities. In this paper, the concrete Lippmann-Schwinger equation is specifically given according to the real geological models. Also, the complete coefficients of the non-smooth point for the integral equation are introduced. Because Boundary Element-Volume integral equation method uses fundamental solutions which are singular when the source point and the field are very close,both in the two dimensional and the three dimensional case, the treatment of the singular kernel affects the precision of this method. The method based on integral transform and integration by parts could treat the points on the boundary and inside the domain. It could transform the singular integral into an analytical one both in two dimensional and in three dimensional cases and thus it could eliminate the singularity. In order to analyze the elastic seismic wave scattering due to regional irregular topographies, the analytical solution for problems of this type is discussed and the analytical solution of P waves by multiple canyons is given. For the boundary reflection, the method used here is infinite boundary element absorbing boundary developed by a pervious researcher. The comparison between the analytical solutions and concrete numerical examples validate the efficiency of this method. We thoroughly discussed the sampling frequency in elastic wave simulation and find that, for a general case, three elements per wavelength is sufficient, however, when the problem is too complex, more elements per wavelength are necessary. Also, the seismic response in the frequency domain of the canyons with different types of random heterogeneities is illustrated. We analyzed the model of the random media, the horizontal and vertical correlation length, the standard deviation, and the dimensionless frequency how to affect the seismic wave amplification on the ground, and thus provide a basis for the choice of the parameter of random media during numerical simulation.