975 resultados para Watts, Isaac, 1674-1748
Resumo:
Digital image
Resumo:
A miniature furnace suitable for routine collection of x-ray data up to 1000°C from single crystals on the Hilger and Watts linear diffractometer, without restricting the normally allowed region of reciprocal space on the diffractometer, is described. The crystal is heated primarily by radiation from a surrounding current-heated, stationary platinum coil wound on a silica bracket. The coil is split at its middle to provide a 4 mm gap for crystal mounting and x-irradiation. The crystal, mounted on a standard goniometer head, can be rotated and centred freely, as in the room temperature case. There is no need for any radiation shields or water-cooling arrangement. Investigations up to 1500°C are possible with slight modifications of the furnace.
Resumo:
Discourses
Resumo:
http://www.archive.org/details/isaacmccoycarlyi012072mbp
Resumo:
http://www.archive.org/details/somebyproductsof013993mbp
Resumo:
$u http://books.google.com/books?vid=OCLC02623863&id=mQz8gPn0et8C&a_sbrr=1 View book via Google
Resumo:
http://www.archive.org/details/bibleworkinbible00birduoft
Resumo:
http://www.archive.org/details/baptistindianmiss00mccorich
Resumo:
A particle swarm optimisation approach is used to determine the accuracy and experimental relevance of six disparate cure kinetics models. The cure processes of two commercially available thermosetting polymer materials utilised in microelectronics manufacturing applications have been studied using a differential scanning calorimetry system. Numerical models have been fitted to the experimental data using a particle swarm optimisation algorithm which enables the ultimate accuracy of each of the models to be determined. The particle swarm optimisation approach to model fitting proves to be relatively rapid and effective in determining the optimal coefficient set for the cure kinetics models. Results indicate that the singlestep autocatalytic model is able to represent the curing process more accurately than more complex model, with ultimate accuracy likely to be limited by inaccuracies in the processing of the experimental data.