966 resultados para Water Treatment Residual
Resumo:
Erythrosine B is widely used for coloring in various applications, especially in the food industry, despite its already proved toxicity and carcinogenicity. The agrowaste pumpkin seed hulls were applied as potential adsorbent for the removal of Erythrosine from aqueous solutions. Adsorption mechanism and kinetics were analyzed for design purposes. The seed hulls were characterized by specific techniques before and after dye retention. It was found that the attachment of Erythrosine B molecules on adsorbent surface may be attributed to the interactions between carboxyl and/or carbonyl groups of both dye and agrowaste wall components. A univariate approach followed by a factorial design was applied to study and analyze the experimental results as well as to estimate the combined effects of the process factors on the removal efficiency and dye uptake. Adsorption mechanism may be predominantly due to intraparticle diffusion, dependent on pore size. The four equilibrium models applied fitted the data well; the maximum adsorption capacity for Erythrosine was 16.4 mg/g. The results showed that adsorbent is effective for Erythrosine B removal for a large concentration range in aqueous solutions (5400 mg/L) in batch systems.
Resumo:
The aim of this study was to evaluate tetracycline antibiotic (TA) removal from contaminated water by Moringa oleifera seed preparations. The composition of synthetic water approximate river natural contaminated water and TA simulated its presence as an emerging pollutant. Interactions between TA and protein preparations (extract; fraction and lectin) were also evaluated. TA was determined by solid phase extraction followed by high performance liquid chromatography - mass spectrometry. Moringa extract and flour removed TA from water. Extract removed TA in all concentrations and better removal (40%) was obtained with 40 mg L1; seed flour (particles < 5mm), 1.25 g L1 and 2.50 g L1 removed 28 and 29% of tetracycline, respectively; particles > 5 mm (0.50 g L1) removed 55% of antibiotic. Interactions between TA and seed preparations were assayed by haemagglutinating activity (HA). Specific HA (SHA) of extract (pH 7) was abolished with tetracycline (5 mg L1); fraction (75%) and lectin HA (97%) were inhibited with TA. Extract SHA decreased by 75% at pH 8. Zeta potential (ZP) of extract 700 mg L1 and tetracycline 50 mg L1 , pH range 5 to 8, showed different results. Extract ZP was more negative (10.73 mV to 16.00 mV) than tetracycline ZP (0.27 mV to 20.15 mV); ZP difference was greater in pH 8. The focus of this study was achieved since moringa preparations removed TA from water and compounds interacting with tetracycline involved at least lectin binding sites. This is a natural process, which do not promote environmental damage.
Resumo:
Drinking water is currently a scarce world resource, the preparation of which requires complex treatments that include clarification of suspended particles and disinfection. Seed extracts of Moringa oleifera Lam., a tropical tree, have been proposed as an environment-friendly alternative, due to their traditional use for the clarification of drinking water. However, the precise nature of the active components of the extract and whether they may be produced in recombinant form are unknown. Here we show that recombinant or synthetic forms of a cationic seed polypeptide mediate efficient sedimentation of suspended mineral particles and bacteria. Unexpectedly, the polypeptide was also found to possesses a bactericidal activity capable of disinfecting heavily contaminated water. Furthermore, the polypeptide has been shown to efficiently kill several pathogenic bacteria, including antibiotic-resistant isolates of Staphylococcus, Streptococcus, and Legionella species. Thus, this polypeptide displays the unprecedented feature of combining water purification and disinfectant properties. Identification of an active principle derived from the seed extracts points to a range of potential for drinking water treatment or skin and mucosal disinfection in clinical settings.
Proyecto de ejecución de zona lúdica de verano formada por piscinas, jacuzzi y edificio de servicios
Resumo:
Este trabajo final de carrera se basa en la redacción de un proyecto de ejecución de una zona lúdica situada en el interior del recinto de un camping, la cual estará formada por una piscina de grandes dimensiones formada por tres vasos de tipo desbordante, una piscina de tipo infantil, un jacuzzi y finalmente un edificio de servicios complementarios (bar, aseos y enfermería). La piscina grande estará formada por tres vasos donde el agua va deslizándose de uno a otro hasta ser recogida por un depósito de compensación desde donde se realizará la filtración y tratamiento antes de ser devuelta al piscina de nuevo. La instalación está también preparada para ser utilizado cada vaso como una piscina individual, recogiendo el agua por los rebosaderos laterales y conduciéndola al mismo vaso de compensación. El tratamiento del agua se realizará de forma física a través de la filtración mediante filtros de arena y de forma química analizando la cantidad de cloro residual y el nivel de PH y posteriormente añadiendo de forma automática las cantidades de cloro y corrector de PH adecuados mediante bombas dosificadoras de precisión. La piscina infantil es de pequeñas dimensiones y esta preparada para ser utilizada por niños de muy corta edad. Se diferencia de la piscina grande en el sistema de recirculación de agua (en este casos e utilizarán skimmers) y en el tratamiento posterior, ya que se utilizará el sistema de hidrólisis salina para su desinfección en lugar de añadir directamente cloro. Este sistema de tratamiento del agua no es tan agresivo como el tradicional, siendo cada vez mas utilizado en piscinas de mediano y pequeño tamaño. El jacuzzi es de grandes dimensiones, disponiendo de su propio sistema de tratamiento de agua, utilizando el sistema de hidrólisis salina como en el caso de la piscina infantil. El edificio de servicios dispone de zonas de bar, enfermería y aseos. Se ha descrito desde la estructura a las instalaciones, justificando las conclusiones a través de los cálculos correspondientes, bien de forma manual, bien utilizando diverso software especializado.
Resumo:
Disposal of lime sludge remains a major challenge to cities in the Midwest. Disposal of lime sludge from water softening adds about 7-10% to the cost of water treatment. Having effective and safe options is essential for future compliance with the regulations of the State of Iowa and within budget restrictions. Dewatering and drying are essential to all reuse applications as this affects transportation costs and utility. Feasibility tests were conducted on some promising applications like SOx control in power generation facilities that burn coal, replacement of limestone as an ingredient in portland cement production, dust control on gravel roads, neutralization of industrial wastewater pH, and combination with fly ash or cement in construction fill applications. A detailed report and analysis of the construction fills application is presented in the second half of the report. A brief discussion of the results directly follows.
Resumo:
Lime sludge, an inert material mostly composed of calcium carbonate, is the result of softening hard water for distribution as drinking water. A large city such as Des Moines, Iowa, produces about 30,700 tons of lime sludge (dry weight basis) annually (Jones et al., 2005). Eight Iowa cities representing, according to the United States (U.S.) Census Bureau, 23% of the state’s population of 3 million, were surveyed. They estimated that they collectively produce 64,470 tons of lime sludge (dry weight basis) per year, and they currently have 371,800 tons (dry weight basis) stockpiled. Recently, the Iowa Department of Natural Resources directed those cities using lime softening in drinking water treatment to stop digging new lagoons to dispose of lime sludge. Five Iowa cities with stockpiles of lime sludge funded this research. The research goal was to find useful and economical alternatives for the use of lime sludge. Feasibility studies tested the efficacy of using lime sludge in cement production, power plant SOx treatment, dust control on gravel roads, wastewater neutralization, and in-fill materials for road construction. Applications using lime sludge in cement production, power plant SOx treatment, and wastewater neutralization, and as a fill material for road construction showed positive results, but the dust control application did not. Since the fill material application showed the most promise in accomplishing the project’s goal within the time limits of this research project, it was chosen for further investigation. Lime sludge is classified as inorganic silt with low plasticity. Since it only has an unconfined compressive strength of approximately 110 kPa, mixtures with fly ash and cement were developed to obtain higher strengths. When fly ash was added at a rate of 50% of the dry weight of the lime sludge, the unconfined strength increased to 1600 kPa. Further, friction angles and California Bearing Ratios were higher than those published for soils of the same classification. However, the mixtures do not perform well in durability tests. The mixtures tested did not survive 12 cycles of freezing and thawing and wetting and drying without excessive mass and volume loss. Thus, these mixtures must be placed at depths below the freezing line in the soil profile. The results demonstrated that chemically stabilized lime sludge is able to contribute bulk volume to embankments in road construction projects.
Resumo:
Työn tavoitteena oli selvittää mitä käsittelyvaihtoehtoja on olemassa jäteveden puhdistamon tertiäärikäsittelyyn ja miten suuri tarve paperi- ja selluteollisuuden prosessivesien puhdistukseen on. Tarkoituksena oli saada käsitys koko tertiäärikäsittelystä eri näkökulmista. Lopuksi läpikäytiin tertiäärikäsittelymenetelmiä ja etsittiin mahdollisia uusia menetelmiä, joita voitaisiin käyttää jäteveden tertiääripuhdistukseen. Ensimmäisenä työssä on perehdytty jäteveden koostumukseen paperi- ja selluteollisuudessa ja puhdistukseen ilmastetulla aktiivilietemenetelmällä, jotta tertiäärikäsittely ymmärrettäisiin konseptina paremmin. Lisäksi työssä selvitettiin tertiäärikäsittelyn tarvetta ja vaihtoehtoja sen käyttämättä jättämiselle teollisuuden ja muun ympäristöä vahingoittavan toiminnan ympäristönäkökohdat huomioonottaen. Lyhyiden menetelmäesitysten jälkeen kiteytetään tertiäärikäsittelyn ympäristönäkökohdatja vaihtoehdot sen käytölle yhteenvetona, jossa otetaan huomioon myös viranomaisten, yrityksen ja BAT referenssien sisältämä tieto tertiäärikäsittelystä. Työn kokeellinen osa sisältää erään tertiäärikäsittelysovelluksenrakentamisen, koekäytön ja laboratorioanalyysien yhteenvedon. Lisäksi menetelmää verrataan kustannus-tehokkuudeltaan vastaavien menetelmien kanssa. Tarkoituksena oli löytää jäteveden tertiäärikäsittelyyn sopiva laitteisto, jonka toimintaanei sisältyisi kemikaalien annostelua ja sitä käytettäisiin lähinnä jätevedenpuhdistamon ongelmatilanteiden väliaikaiseksi ratkaisuksi. Mahdollisesti se voisi toimia myös jatkuvatoimisesti veden kirkastuksessa. Diplomityössä rakennettu laitteisto, jota käytettiin myös pilot koeajoissa, ei ollut paras mahdollinen laitteisto tertiäärikäsittelyn toteuttamiseksi paperi- ja selluteollisuudessa, mutta kilpailukykyinen muiden laitteistojen kanssa. Laitteiston toimintaperiaate on kuitenkin käyttökelpoinen tietyin varauksin ja sitä voidaan käyttää vedenpuhdistamiseen.
Resumo:
Kuluneen vuosikymmenen aikana metsäteollisuuden päästöt ympäristöön ovat pienentyneet huomattavasti tuotantomäärien kasvustahuolimatta. Lainsäädännön myötä lupa-arvot tiukentuvat edelleen joten olemassa olevia puhdistus prosesseja on parannettava ja niiden rinnalle on kehitettävä uusia, yhä tehokkaampia menetelmiä. Aquaflow Oy suunnittelee jäteveden puhdistamoja sellu- ja paperiteollisuuteen. Kilpailun kiristyessä kilpailuetua haetaan jatkuvan kehittymisen kautta. Yhä useammilla jäteveden puhdistamoilla tarvitaan teriäärikäsittely biohajoamattoman aineksen poistamiseen. Tertiäärikäsittely on käyttökustannuksiltaan kallis kemikaali kulutuksensa vuoksi. Tässä työssä pyrittiin optimoimaan tertiääriprosessin kemikaalien syöttöä. Lisäksi selvitettiin millaisissa oloissa keskeiset saostus ja flokkaus prosessit toimivatparhaiten, sekä mitkä tekijät vaikuttavat merkittävästi jäteveden kemiallisen käsittelyn tulokseen. Saatujen tulosten perusteella kemikaalien sekoituksen tehostuksen seurauksena kemikaali määriä voidaan pienentää, samalla puhdistustulos paranee ja jäännöskemikaalien määrä pienenee. pH:n säätö on olennainen osa prosessin toiminnan kannalta, jos pH ei ole kemikaalien toiminta alueella ei puhdistusta tapahdu ja kemikaalit kulkeutuvat luontoon. Tertiäärikäsittelyyn tulevan jäteveden online seurannan avulla juuri oikea kemikaaliannos olisihelpompaa määrittää kuin päivän viiveellä tulevien laboratorio analyysien perusteella ja yli-/ali annostukselta vältyttäisiin
Resumo:
All the experimental part of this final project was done at Laboratoire de Biotechnologie Environnementale (LBE) from the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, during 6 months (November 2013- May 2014). A fungal biofilter composed of woodchips was designed in order to remove micropollutants from the effluents of waste water treatment plants. Two fungi were tested: Pleurotus ostreatus and Trametes versicolor in order to evaluate their efficiency for the removal of two micropollutants: the anti-inflammatory drug naproxen and the antibiotic sulfamethoxazole,. Although Trametes versicolor was able to degrade quickly naproxen, this fungus was not any more active after one week of operation in the filter. Pleurotus ostreatus was, on contrary, able to survive more than 3 months in the filter, showing good removal efficiencies of naproxen and sulfamethoxazole during all this period, in tap water but also in real treated municipal wastewater. Several other experiments have provided insight on the removal mechanisms of these micropollutants in the fungal biofilter (degradation and adsorption) and also allowed to model the removal trend. Fungal treatment with Pleurotus ostreatus grown on wood substrates appeared to be a promising solution to improve micropollutants removal in wastewater.
Resumo:
In many industries, such as petroleum production, and the petrochemical, metal, food and cosmetics industries, wastewaters containing an emulsion of oil in water are often produced. The emulsions consist of water (up to 90%), oils (mineral, animal, vegetable and synthetic), surfactants and other contaminates. In view of its toxic nature and its deleterious effects on the surrounding environment (soil, water) such wastewater needs to be treated before release into natural water ways. Membrane-based processes have successfully been applied in industrial applications and are considered as possible candidates for the treatment of oily wastewaters. Easy operation, lower cost, and in some cases, the ability to reduce contaminants below existing pollution limits are the main advantages of these systems. The main drawback of membranes is flux decline due tofouling and concentration polarisation. The complexity of oil-containing systems demands complementary studies on issues related to the mitigation of fouling and concentration polarisation in membranebased ultrafiltration. In this thesis the effect of different operating conditions (factors) on ultrafiltration of oily water is studied. Important factors are normally correlated and, therefore, their effect should be studied simultaneously. This work uses a novel approach to study different operating conditions, like pressure, flow velocity, and temperature, and solution properties, like oil concentration (cutting oil, diesel, kerosene), pH, and salt concentration (CaCl2 and NaCl)) in the ultrafiltration of oily water, simultaneously and in a systematic way using an experimental design approach. A hypothesis is developed to describe the interaction between the oil drops, salt and the membrane surface. The optimum conditions for ultrafiltration and the contribution of each factor in the ultrafiltration of oily water are evaluated. It is found that the effect on permeate flux of the various factors studied strongly depended on the type of oil, the type of membrane and the amount of salts. The thesis demonstrates that a system containing oil is very complex, and that fouling and flux decline can be observed even at very low pressures. This means that only the weak form of the critical flux exists for such systems. The cleaning of the fouled membranes and the influence of different parameters (flow velocity, temperature, time, pressure, and chemical concentration (SDS, NaOH)) were evaluated in this study. It was observed that fouling, and consequently cleaning, behaved differently for the studied membranes. Of the membranes studied, the membrane with the lowest propensity for fouling and the most easily cleaned was the regenerated cellulose membrane (C100H). In order to get more information about the interaction between the membrane and the components of the emulsion, a streaming potential study was performed on the membrane. The experiments were carried out at different pH and oil concentration. It was seen that oily water changed the surface charge of the membrane significantly. The surface charge and the streaming potential during different stages of filtration were measured and analysed being a new method for fouling of oil in this thesis. The surface charge varied in different stages of filtration. It was found that the surface charge of a cleaned membrane was not the same as initially; however, the permeability was equal to that of a virgin membrane. The effect of filtration mode was studied by performing the filtration in both cross-flow and deadend mode. The effect of salt on performance was considered in both studies. It was found that salt decreased the permeate flux even at low concentration. To test the effect of hydrophilicity change, the commercial membranes used in this thesis were modified by grafting (PNIPAAm) on their surfaces. A new technique (corona treatment) was used for this modification. The effect of modification on permeate flux and retention was evaluated. The modified membranes changed their pore size around 33oC resulting in different retention and permeability. The obtained results in this thesis can be applied to optimise the operation of a membrane plant under normal or shock conditions or to modify the process such that it becomes more efficient or effective.
Resumo:
The project "Water and Environment"for the improvement of educational practices in the aquatic environment, is a research project led by four members of the Research Group of Physical Education at the University of Vic (GREF) experts in water activities. The aim is to train the technicians who teach swimming during school hours. The training is based on improving water treatment practices and competence to face a contradictory scene where clubs develop educational content and where schools transfer to clubs part of its educational activity to contribute significantly and positively to water activities fitting the educational curriculum.
Resumo:
The dissertation is based on four articles dealing with recalcitrant lignin water purification. Lignin, a complicated substance and recalcitrant to most treatment technologies, inhibits seriously pulp and paper industry waste management. Therefore, lignin is studied, using WO as a process method for its degradation. A special attention is paid to the improvement in biodegradability and the reduction of lignin content, since they have special importance for any following biological treatment. In most cases wet oxidation is not used as a complete ' mineralization method but as a pre treatment in order to eliminate toxic components and to reduce the high level of organics produced. The combination of wet oxidation with a biological treatment can be a good option due to its effectiveness and its relatively low technology cost. The literature part gives an overview of Advanced Oxidation Processes (AOPs). A hot oxidation process, wet oxidation (WO), is investigated in detail and is the AOP process used in the research. The background and main principles of wet oxidation, its industrial applications, the combination of wet oxidation with other water treatment technologies, principal reactions in WO, and key aspects of modelling and reaction kinetics are presented. There is also given a wood composition and lignin characterization (chemical composition, structure and origin), lignin containing waters, lignin degradation and reuse possibilities, and purification practices for lignin containing waters. The aim of the research was to investigate the effect of the operating conditions of WO, such as temperature, partial pressure of oxygen, pH and initial concentration of wastewater, on the efficiency, and to enhance the process and estimate optimal conditions for WO of recalcitrant lignin waters. Two different waters are studied (a lignin water model solution and debarking water from paper industry) to give as appropriate conditions as possible. Due to the great importance of re using and minimizing the residues of industries, further research is carried out using residual ash of an Estonian power plant as a catalyst in wet oxidation of lignin-containing water. Developing a kinetic model that includes in the prediction such parameters as TOC gives the opportunity to estimate the amount of emerging inorganic substances (degradation rate of waste) and not only the decrease of COD and BOD. The degradation target compound, lignin is included into the model through its COD value (CODligning). Such a kinetic model can be valuable in developing WO treatment processes for lignin containing waters, or other wastewaters containing one or more target compounds. In the first article, wet oxidation of "pure" lignin water was investigated as a model case with the aim of degrading lignin and enhancing water biodegradability. The experiments were performed at various temperatures (110 -190°C), partial oxygen pressures (0.5 -1.5 MPa) and pH (5, 9 and 12). The experiments showed that increasing the temperature notably improved the processes efficiency. 75% lignin reduction was detected at the lowest temperature tested and lignin removal improved to 100% at 190°C. The effect of temperature on the COD removal rate was lower, but clearly detectable. 53% of organics were oxidized at 190°C. The effect of pH occurred mostly on lignin removal. Increasing the pH enhanced the lignin removal efficiency from 60% to nearly 100%. A good biodegradability ratio (over 0.5) was generally achieved. The aim of the second article was to develop a mathematical model for "pure" lignin wet oxidation using lumped characteristics of water (COD, BOD, TOC) and lignin concentration. The model agreed well with the experimental data (R2 = 0.93 at pH 5 and 12) and concentration changes during wet oxidation followed adequately the experimental results. The model also showed correctly the trend of biodegradability (BOD/COD) changes. In the third article, the purpose of the research was to estimate optimal conditions for wet oxidation (WO) of debarking water from the paper industry. The WO experiments were' performed at various temperatures, partial oxygen pressures and pH. The experiments showed that lignin degradation and organics removal are affected remarkably by temperature and pH. 78-97% lignin reduction was detected at different WO conditions. Initial pH 12 caused faster removal of tannins/lignin content; but initial pH 5 was more effective for removal of total organics, represented by COD and TOC. Most of the decrease in organic substances concentrations occurred in the first 60 minutes. The aim of the fourth article was to compare the behaviour of two reaction kinetic models, based on experiments of wet oxidation of industrial debarking water under different conditions. The simpler model took into account only the changes in COD, BOD and TOC; the advanced model was similar to the model used in the second article. Comparing the results of the models, the second model was found to be more suitable for describing the kinetics of wet oxidation of debarking water. The significance of the reactions involved was compared on the basis of the model: for instance, lignin degraded first to other chemically oxidizable compounds rather than directly to biodegradable products. Catalytic wet oxidation of lignin containing waters is briefly presented at the end of the dissertation. Two completely different catalysts were used: a commercial Pt catalyst and waste power plant ash. CWO showed good performance using 1 g/L of residual ash gave lignin removal of 86% and COD removal of 39% at 150°C (a lower temperature and pressure than with WO). It was noted that the ash catalyst caused a remarkable removal rate for lignin degradation already during the pre heating for `zero' time, 58% of lignin was degraded. In general, wet oxidation is not recommended for use as a complete mineralization method, but as a pre treatment phase to eliminate toxic or difficultly biodegradable components and to reduce the high level of organics. Biological treatment is an appropriate post treatment method since easily biodegradable organic matter remains after the WO process. The combination of wet oxidation with subsequent biological treatment can be an effective option for the treatment of lignin containing waters.
Resumo:
This study aimed to evaluate the effect of Moringa oleifera Lam extract on the removal of total solids (TS), total suspended solids (TSS) and chemical oxygen demand (COD), in different filter media for treating wastewater of dairy cattle breeding (DCW). The moringa seed extract was obtained by grinding 50 g of seeds in one liter of distilled water and, after passing the solution through a quantitative paper filter of 25 microns, 60 mL of the extract were added to wastewater from cattle breeding before the filtration process in organic filters made of thin coal, bamboo leaves, eucalyptus leaves, gliricidia branches and sawdust. This was followed by the completely randomized experimental design, adopting a factorial of 5 x 2. Aliquots of filtered effluent were collected and the total solids (TS) concentrations, total suspended solids (TSS) and chemical oxygen demand (COD) were determined. It was found that the increase in the efficiency of removal of COD and total solids can be attributed to the coagulating power of the moringa seed extract, wherein the filter medium with bamboo leaves presented the best performance, showing potential for use as alternative filter material in the primary treatment of DCW.
Resumo:
The acid mining drainage is considered the most significant environmental pollution problem around the world for the extensive formation acidic leachates containing heavy metals. Adsorption is widely used methods in water treatment due to it easy operation and the availability of a wide variety of commercial adsorbent (low cost). The primary goal of this thesis was to investigate the efficiency of neutralizing agents, CaCO3 and CaSiO3, and metal adsorption materials with unmodified limestone from Company Nordkalk Oy. In addition to this, the side materials of limestone mining were tested for iron adsorption from acidic model solution. This study was executed at Lappeenranta University of Technology, Finland. The work utilised fixed-bed adsorption column as the main equipment and large fluidized column. Atomic absorption spectroscopy (AAS) and x-ray diffraction (XRD) was used to determine ferric removal and the composition of material respectively. The results suggest a high potential for the studied materials to be used a low cost adsorbents in acid mine drainage treatment. From the two studied adsorbents, the FS material was more suitable than the Gotland material. Based on the findings, it is recommended that further studies might include detailed analysis of Gotland materials.
Resumo:
Tavallisten hapetusmenetelmien sijasta kehittyneitä hapetusmenetelmiä (AOP) on kehitetty yhä enemmän, jotta hapetusprosessista tulisi kannattavampi, tehokkaampi, ympäristöystävällisempi ja sitä voitaisiin hyödyntää laajalti eri paikoissa. Uusi teknologia, joka käyttää otsonia ja hydroksyyliradikaalia sähköimpulssien kanssa, on yksi mahdollinen tehokkaampi vedenkäsittelymentelmä. Kyseistä menetelmää kutsutaa pulsed corona discharge (PCD) -menetelmäksi, joka käyttää prosessissa muodostuvia otsonia ja hydroksyyliradikaalia hapettavina tekijöinä. Tässä työssä tutkittiin nitraatin muodostumista vedessä, kun vettä käsiteltiin PCD-laitteessa ja, kun oksalaatti- ja formaatti-ioneja oli sekoittuneina veteen. Nitraatteja muodostuu PCD–laitteessa veteen, kun ilman typpi reagoi hapettimina toimivien otsonin ja hydroksyyliradikaalin kanssa. Aiemmissa tutkimuksissa nitraatin muodostumisen on todistettu parantuvan, kun karboksyylihapot muurahais- ja oksaalihappo ovat sekoittuneina veteen. Tässä tutkimuksessa tarkoituksena oli tutkia, miten formaatti- ja oksalaatti-ionien, joiden pitoisuudet olivat 0 ppm, 50 ppm ja 100 ppm, läsnäolo vedessä vaikuttaa nitraatin muodostumiseen. PCD-kokeista saadut näytteet analysoitiin ionikromatografilla. Kyseisessä tutkimuksessa nitraatin muodostuminen oli samansuuruista jokaisessa kokeessa hapetusajan kasvaessa samalla, kun otettujen näytteiden pH-arvot laskivat. Tuloksena voitiin pitää sitä, ettei formaatti- tai oksalaatti-ioneilla ollut vaikutusta nitraatti-ionien muodostumiseen.