979 resultados para Water Engineering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work aims to achieve and further develop a hydrogeomechanical approach in Caldas da Cavaca hydromineral system rock mass (Aguiar da Beira, NW Portugal), and contribute to a better understanding of the hydrogeological conceptual site model. A collection of several data, namely geology, hydrogeology, rock and soil geotechnics, borehole hydraulics and hydrogeomechanics, was retrieved from three rock slopes (Lagoa, Amores and Cancela). To accomplish a comprehensive analysis and rock engineering conceptualisation of the site, a multi‐technical approach were used, such as, field and laboratory techniques, hydrogeotechnical mapping, hydrogeomechanical zoning and hydrogeomechanical scheme classifications and indexes. In addition, a hydrogeomechanical data analysis and assessment, such as Hydro‐Potential (HP)‐Value technique, JW Joint Water Reduction index, Hydraulic Classification (HC) System were applied on rock slopes. The hydrogeomechanical zone HGMZ 1 of Lagoa slope achieved higher hydraulic conductivities with poorer rock mass quality results, followed by the hydrogeomechanical zone HGMZ 2 of Lagoa slope, with poor to fair rock mass quality and lower hydraulic parameters. In addition, Amores slope had a fair to good rock mass quality and the lowest hydraulic conductivity. The hydrogeomechanical zone HGMZ 3 of Lagoa slope, and the hydrogeomechanical zones HGMZ 1 and HGMZ 2 of Cancela slope had a fair to poor rock mass quality but were completely dry. Geographical Information Systems (GIS) mapping technologies was used in overall hydrogeological and hydrogeomechanical data integration in order to improve the hydrogeological conceptual site model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Engineering and Technology Sciences, Chemical Engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, new methods of clean and environmentally friendly energy production have been the focus of intense research efforts. Microbial fuel cells (MFCs) are devices that utilize naturally occurring microorganisms that feed on organic matter, like waste water, while producing electrical energy. The natural habitats of bacteria thriving in microbial fuel cells are usually marine and freshwater sediments. These microorganisms are called dissimilatory metal reducing bacteria (DMRB), but in addition to metals like iron and manganese, they can use organic compounds like DMSO or TMAO, radionuclides and electrodes as terminal electron acceptors in their metabolic pathways.(...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The regeneration of soft biological tissues requires new substitutes that exhibit mechanical properties similar to the native tissue. Herein, thin saloplastic membranes with tunable physical properties are prepared by complexation of chitosan and alginate solutions containing different concentrations of sodium chloride. Polyelectrolyte complexes (PECs) are transferred to flat Petri dishes for compaction into membrane shapes by sedimentation and solvent evaporation. All membranes are resistant to degradation by lysozyme and are stable in solutions with pH values between 1 and 13. Immersing the different membranes in new doping solutions of increasing salt concentrations triggers the typical saloplastic behavior, with a high water absorption and decrease of the rigidity and ultimate tensile strength. The range of such variations is tuned by the sodium chloride amount used in the synthesis: high salt concentrations increase water uptake and tensile moduli, while decreasing the ultimate strength. Cellular assays demonstrate high proliferation rates and viability of L929 fibroblasts seeded onto the most rigid membranes. The results validate the use of saloplastic membranes as soft tissue substitutes for future biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências - Especialidade em Biologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências (Especialidade de Física)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlorine is the most commonly used agent for general disinfection, particularly for microbial growth control in drinking water distribution systems. The goals of this study were to understand the effects of chlorine, as sodium hypochlorite (NaOCl), on bacterial membrane physicochemical properties (surface charge, surface tension and hydrophobicity) and on motility of two emerging pathogens isolated from drinking water, Acinetobacter calcoaceticus and Stenotrophomonas maltophilia. The effects of NaOCl on the control of single and dual-species monolayer adhered bacteria (2 h incubation) and biofilms (24 h incubation) was also assessed. NaOCl caused significant changes on the surface hydrophobicity and motility of A. calcoaceticus, but not of S. maltophilia. Planktonic and sessile S. maltophilia were significantly more resistant to NaOCl than A. calcoaceticus. Monolayer adhered co-cultures of A. calcoaceticus-S. maltophilia were more resilient than the single species. Oppositely, dual species biofilms were more susceptible to NaOCl than their single species counterparts. In general, biofilm removal and killing demonstrated to be distinct phenomena: total bacterial viability reduction was achieved even if NaOCl at the higher concentrations had a reduced removal efficacy, allowing biofilm reseed. In conclusion, understanding the antimicrobial susceptibility of microorganisms to NaOCl can contribute to the design of effective biofilm control strategies targeting key microorganisms, such as S. maltophilia, and guarantying safe and high-quality drinking water. Moreover, the results reinforce that biofilms should be regarded as chronic contaminants of drinking water distribution systems and accurate methods are needed to quantify their presence as well as strategies complementary/alternative to NaOCl are required to effectively control the microbiological quality of drinking water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particulate fouling tests were carried out using kaolin-water suspensions flowing through an annular heat exchanger with a copper inner tube. The flow rate was changed from test to test, but the fluid temperature and pH, as well as the particle concentration, were maintained constant. In the lower range of fluid velocities (<0.5 m/s), the deposition process seemed to be controlled by mass transfer. The corresponding experimental transport fluxes were compared to the predictions obtained with several models, showing that diffusion governed particle transport. The absolute values of the mass transfer fluxes and their dependences on the Reynolds number were satisfactorily predicted by some of the models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Gastric or intestinal patches, commonly used for reconstructive cystoplasty, may induce severe metabolic complications. The use of bladder tissues reconstructed in vitro could avoid these complications. We compared cellular differentiation and permeability characteristics of human native with in vitro cultured stratified urothelium. MATERIALS AND METHODS: Human stratified urothelium was induced in vitro. Morphology was studied with light and electron microscopy and expression of key cellular proteins was assessed using immunohistochemistry. Permeability coefficients were determined by measuring water, urea, ammonia and proton fluxes across the urothelium. RESULTS: As in native urothelium the stratified urothelial construct consisted of basal membrane and basal, intermediate and superficial cell layers. The apical membrane of superficial cells formed villi and glycocalices, and tight junctions and desmosomes were developed. Immunohistochemistry showed similarities and differences in the expression of cytokeratins, integrin and cellular adhesion proteins. In the cultured urothelium cytokeratin 20 and integrin subunits alpha6 and beta4 were absent, and symplekin was expressed diffusely in all layers. Uroplakins were clearly expressed in the superficial umbrella cells of the urothelial constructs, however, they were also present in intermediate and basal cells. Symplekin and uroplakins were expressed only in the superficial cells of native bladder tissue. The urothelial constructs showed excellent viability, and functionally their permeabilities for water, urea and ammonia were no different from those measured in native human urothelium. Proton permeability was even lower in the constructs compared to that of native urothelium. CONCLUSIONS: Although the in vitro cultured human stratified urothelium did not show complete terminal differentiation of its superficial cells, it retained the same barrier characteristics against the principal urine components. These results indicate that such in vitro cultured urothelium, after being grown on a compliant degradable support or in coculture with smooth muscle cells, is suitable for reconstructive cystoplasty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously published scientific papers have reported a negative correlation between drinking water hardness and cardiovascular mortality. Some ecologic and case-control studies suggest the protective effect of calcium and magnesium concentration in drinking water. In this article we present an analysis of this protective relationship in 538 municipalities of Comunidad Valenciana (Spain) from 1991-1998. We used the Spanish version of the Rapid Inquiry Facility (RIF) developed under the European Environment and Health Information System (EUROHEIS) research project. The strategy of analysis used in our study conforms to the exploratory nature of the RIF that is used as a tool to obtain quick and flexible insight into epidemiologic surveillance problems. This article describes the use of the RIF to explore possible associations between disease indicators and environmental factors. We used exposure analysis to assess the effect of both protective factors--calcium and magnesium--on mortality from cerebrovascular (ICD-9 430-438) and ischemic heart (ICD-9 410-414) diseases. This study provides statistical evidence of the relationship between mortality from cardiovascular diseases and hardness of drinking water. This relationship is stronger in cerebrovascular disease than in ischemic heart disease, is more pronounced for women than for men, and is more apparent with magnesium than with calcium concentration levels. Nevertheless, the protective nature of these two factors is not clearly established. Our results suggest the possibility of protectiveness but cannot be claimed as conclusive. The weak effects of these covariates make it difficult to separate them from the influence of socioeconomic and environmental factors. We have also performed disease mapping of standardized mortality ratios to detect clusters of municipalities with high risk. Further standardization by levels of calcium and magnesium in drinking water shows changes in the maps when we remove the effect of these covariates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cape Verde, off the coast of Senegal in western Africa, is a volcanic archipelago where soil and water conservation techniques play an important role in the overall subsistence of half a million inhabitants. In fact, the step slopes in the more agricultural islands due to it's volcanic origin, together with semi-arid and arid environments (the country is located in the Sahelian region), characterized by a very irregular wet season, with high intensity rainfall events, make life tough. The hard conditions lead during the first half of the XX century to frequent cycles of drought with severe implications on the local populations, with impressive numbers of deaths by famine, and a decrease of the number of local inhabitants by more than halve in some islands. Maintain the soil in place and the water inside the soil was there after a mater of survival, and the CapeVerdians implemented over the last half century a number of soil and water conservation techniques that cover all the landscape. In this work, we monitored a number of slope soil and water conservation techniques, such as terraces, half moons, live barriers, etc, together with two cultural strategies, used to plant corn and beans on one side and peanuts on the other, with a semi-quantitative methodology, to evaluate their effectiveness. A discussion is given on the costs and effectiveness of the techniques to reduce overland flow production and therefore erosion, and to promote rainfall infiltration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this manual is to provide design guidelines for low water stream crossings (LWSCs). Rigid criteria for determining the applicability of a LWSC to a given site are not established since each site is unique in terms of physical, social, economic, and political factors. Because conditions vary from county to county, it is not the intent to provide a "cook-book" procedure for designing a LWSC. Rather, engineering judgment must be applied to the guidelines contained in this manual.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An asphalt concrete (ACC) overlay is most often the rehabilitative effort used to maintain the serviceability of either an ACC or PCC pavement. The major problem in durability of this ACC overlay comes from reflective cracking. These cracks usually open, allowing water to enter the unsealed crack and strip the ACC in the overlay. The stripping of the ACC allows accelerated deterioration at the crack. Two engineering fabrics were evaluated in this project in order to determine their effectiveness in reducing reflective cracking. These two materials are: PavePrep, Contech Construction Products, Inc., and Pro-Guard, Phillips Fiber Corporation. A 4.2 km (2.6 mi) roadway in Audubon County was selected for the research project. The roadway was divided into eight test sections. Four of the test sections are conventional resurfacing. The other four sections are split between the two engineering fabrics (two Pro-Guard and two PavePrep). A 75 mm (3 in.) thick overlay was placed over the entire project.