871 resultados para Water Distribution Networks Leak Detection I


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is arguably the most critical issue facing our generation and the next. As we move towards a sustainable future, the grid is rapidly evolving with the integration of more and more renewable energy resources and the emergence of electric vehicles. In particular, large scale adoption of residential and commercial solar photovoltaics (PV) plants is completely changing the traditional slowly-varying unidirectional power flow nature of distribution systems. High share of intermittent renewables pose several technical challenges, including voltage and frequency control. But along with these challenges, renewable generators also bring with them millions of new DC-AC inverter controllers each year. These fast power electronic devices can provide an unprecedented opportunity to increase energy efficiency and improve power quality, if combined with well-designed inverter control algorithms. The main goal of this dissertation is to develop scalable power flow optimization and control methods that achieve system-wide efficiency, reliability, and robustness for power distribution networks of future with high penetration of distributed inverter-based renewable generators.

Proposed solutions to power flow control problems in the literature range from fully centralized to fully local ones. In this thesis, we will focus on the two ends of this spectrum. In the first half of this thesis (chapters 2 and 3), we seek optimal solutions to voltage control problems provided a centralized architecture with complete information. These solutions are particularly important for better understanding the overall system behavior and can serve as a benchmark to compare the performance of other control methods against. To this end, we first propose a branch flow model (BFM) for the analysis and optimization of radial and meshed networks. This model leads to a new approach to solve optimal power flow (OPF) problems using a two step relaxation procedure, which has proven to be both reliable and computationally efficient in dealing with the non-convexity of power flow equations in radial and weakly-meshed distribution networks. We will then apply the results to fast time- scale inverter var control problem and evaluate the performance on real-world circuits in Southern California Edison’s service territory.

The second half (chapters 4 and 5), however, is dedicated to study local control approaches, as they are the only options available for immediate implementation on today’s distribution networks that lack sufficient monitoring and communication infrastructure. In particular, we will follow a reverse and forward engineering approach to study the recently proposed piecewise linear volt/var control curves. It is the aim of this dissertation to tackle some key problems in these two areas and contribute by providing rigorous theoretical basis for future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This doctoral Thesis defines and develops a new methodology for feeder reconfiguration in distribution networks with Distributed Energy Resources (DER). The proposed methodology is based on metaheuristic Ant Colony Optimization (ACO) algorithms. The methodology is called Item Oriented Ant System (IOAS) and the doctoral Thesis also defines three variations of the original methodology, Item Oriented Ant Colony System (IOACS), Item Oriented Max-min Ant System (IOMMAS) y Item Oriented Max-min Ant Colony System (IOACS). All methodologies pursue a twofold objective, to minimize the power losses and maximize DER penetration in distribution networks. The aim of the variations is to find the algorithm that adapts better to the present optimization problem, solving it most efficiently. The main feature of the methodology lies in the fact that the heuristic information and the exploitation information (pheromone) are attached to the item not to the path. Besides, the doctoral Thesis proposes to use feeder reconfiguration in order to increase the distribution network capacity of accepting a major degree of DER. The proposed methodology and its three variations have been tested and verified in two distribution networks well documented in the existing bibliography. These networks have been modeled and used to test all proposed methodologies for different scenarios with various DER penetration degrees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantitative distributional pattern of fat and water has been studied in the flesh of the various zones corresponding to the dorsal and ventral regions of the body of a common cat-fish, Wallago attu. The ventral aspect of the body showed more accumulation of fat than the dorsal aspect. The fat content in the ventral region also exhibited an increase from the anterior to the posterior zones. In the dorsal region, however, the back portion of the body, behind the dorsal fin, generally possessed low fat content. On an average, the highest fat accumulation was observed in the caudal peduncle region. The distribution of water followed an almost opposite pattern of distribution, indicating an inverse relationship with fat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat pumps can provide domestic heating at a cost that is competitive with oil heating in particular. If the electricity supply contains a significant amount of renewable generation, a move from fossil fuel heating to heat pumps can reduce greenhouse gas emissions. The inherent thermal storage of heat pump installations can also provide the electricity supplier with valuable flexibility. The increase in heat pump installations in the UK and Europe in the last few years poses a challenge for low-voltage networks, due to the use of induction motors to drive the pump compressors. The induction motor load tends to depress voltage, especially on starting. The paper includes experimental results, dynamic load modelling, comparison of experimental results and simulation results for various levels of heat pump deployment. The simulations are based on a generic test network designed to capture the main characteristics of UK distribution system practice. The simulations employ DIgSlILENT to facilitate dynamic simulations that focus on starting current, voltage variations, active power, reactive power and switching transients.