984 resultados para Warm Asphalt Binder,SBS,Dynamic Shear Rheometer,Rotational Viscometer,Equiviscosità,RTFOT,FTIR
Resumo:
It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic, systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.
Resumo:
Nowadays, recycling has become a very important objective for the society in the scope of a closed loop product life cycle. In recent years, new recycling techniques have been developed in the area of road pavements that allow the incorporation of high percentages of reclaimed asphalt (RA) materials in recycled asphalt mixtures. The use of foamed bitumen for production of recycled asphalt mixtures is one of those techniques, which also allows the reduction of the mixing temperatures (warm mix technology). However, it is important to evaluate if this solution can maintain or improve the performance of the resulting mixtures. Thus, the main aim of the present study is to assess the performance of warm recycled asphalt mixtures incorporating foamed bitumen as the new binder and 50% RA, in comparison with a control mixture using conventional bitumen. Four mixtures have been produced with 50% RA, one of them at typical high mixing temperatures with a conventional bitumen (control mixture) and the other three with foamed bitumen at different production temperatures. These four mixtures were tested to evaluate their compactability and water sensitivity. The laboratory test results showed that the production of recycled mixtures with foamed bitumen can be reduced by 40ºC without changing the performance of the resulting mixtures.
Resumo:
With the constant need to improve and make the production of asphalt mixtures more sustainable, new production techniques have been developed, the implementation of which implies the correct knowledge of their performance. One of the most promising asphalt production techniques is the use of foamed bitumen. However, it is essential to understand how this binder will behave when subject to the expansion process. The loss of volume of the foamed bitumen could be translated by a decay curve, which allows to determine the ideal temperature and water content added to the bitumen in order to assure adequate conditions to the mix the bitumen with the aggregates. On the present study, a conventional 160/220 pen grade bitumen was tested by using different temperatures and water contents, and it was concluded that the optimum temperature for the production of foamed bitumen (with the studied bitumen) is 150 ºC, which corresponds to a viscosity of 0.1 Pa.s. The water content mostly influence the half-life of the bitumen foam, resulting in quicker volume reductions for higher water contents.
Resumo:
Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D + t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D + t measured projection sequence and the corresponding forward projections of the deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.
Resumo:
Effects of polyolefins, neoprene, styrene-butadiene-styrene (SBS) block copolymers, styrene-butadiene rubber (SBR) latex, and hydrated lime on two asphalt cements were evaluated. Physical and chemical tests were performed on a total of 16 binder blends. Asphalt concrete mixes were prepared and tested with these modified binders and two aggregates (crushed limestone and gravel), each at three asphalt content levels. Properties evaluated on the modified binders (original and thin-film oven aged) included: viscosity at 25 deg C, 60 deg C and 135 deg C with capillary tube and cone-plate viscometer, penetration at 5 deg C and 25 deg C, softening point, force ductility, and elastic recovery at 10 deg C, dropping ball test, tensile strength, and toughness and tenacity tests at 25 deg C. From these the penetration index, the viscosity-temperature susceptibility, the penetration-viscosity number, the critical low-temperature, long loading-time stiffness, and the cracking temperature were calculated. In addition, the binders were studied with x-ray diffraction, reflected fluorescence microscopy, and high-performance liquid chromatography techniques. Engineering properties evaluated on the 72 asphalt concrete mixes containing additives included: Marshall stability and flow, Marshall stiffness, voids properties, resilient modulus, indirect tensile strength, permanent deformation (creep), and effects of moisture by vacuum-saturation and Lottman treatments. Pavement sections of varied asphalt concrete thicknesses and containing different additives were compared to control mixes in terms of structural responses and pavement lives for different subgrades. Although all of the additives tested improved at least one aspect of the binder/mixture properties, no additive was found to improve all the relevant binder/mixture properties at the same time. On the basis of overall considerations, the optimum beneficial effects can be expected when the additives are used in conjunction with softer grade asphalts.
Resumo:
Asphalt pavements suffer various failures due to insufficient quality within their design lives. The American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) has been proposed to improve pavement quality through quantitative performance prediction. Evaluation of the actual performance (quality) of pavements requires in situ nondestructive testing (NDT) techniques that can accurately measure the most critical, objective, and sensitive properties of pavement systems. The purpose of this study is to assess existing as well as promising new NDT technologies for quality control/quality assurance (QC/QA) of asphalt mixtures. Specifically, this study examined field measurements of density via the PaveTracker electromagnetic gage, shear-wave velocity via surface-wave testing methods, and dynamic stiffness via the Humboldt GeoGauge for five representative paving projects covering a range of mixes and traffic loads. The in situ tests were compared against laboratory measurements of core density and dynamic modulus. The in situ PaveTracker density had a low correlation with laboratory density and was not sensitive to variations in temperature or asphalt mix type. The in situ shear-wave velocity measured by surface-wave methods was most sensitive to variations in temperature and asphalt mix type. The in situ density and in situ shear-wave velocity were combined to calculate an in situ dynamic modulus, which is a performance-based quality measurement. The in situ GeoGauge stiffness measured on hot asphalt mixtures several hours after paving had a high correlation with the in situ dynamic modulus and the laboratory density, whereas the stiffness measurement of asphalt mixtures cooled with dry ice or at ambient temperature one or more days after paving had a very low correlation with the other measurements. To transform the in situ moduli from surface-wave testing into quantitative quality measurements, a QC/QA procedure was developed to first correct the in situ moduli measured at different field temperatures to the moduli at a common reference temperature based on master curves from laboratory dynamic modulus tests. The corrected in situ moduli can then be compared against the design moduli for an assessment of the actual pavement performance. A preliminary study of microelectromechanical systems- (MEMS)-based sensors for QC/QA and health monitoring of asphalt pavements was also performed.
Resumo:
This work concerns the experimental study of rapid granular shear flows in annular Couette geometry. The flow is induced by continuous driving of the horizontal plate at the top of the granular bed in an annulus. The compressive pressure, driving torque, instantaneous bed height and rotational speed of the shearing plate are measured. Moreover, local stress fluctuations are measured in a medium made of steel spheres 2 and 3 mm in diameter. Both monodisperse packing and bidisperse packing are investigated to reveal the influence of size diversity in intermittent features of granular materials. Experiments are conducted in an annulus that can contain up to 15 kg of spherical steel balls. The shearing granular medium takes place via the rotation of the upper plate which compresses the material loaded inside the annulus. Fluctuations of compressive force are locally measured at the bottom of the annulus using a piezoelectric sensor. Rapid shear flow experiments are pursued at different compressive forces and shear rates and the sensitivity of fluctuations are then investigated by different means through monodisperse and bidisperse packings. Another important feature of rapid granular shear flows is the formation of ordered structures upon shearing. It requires a certain range for the amount of granular material (uniform size distribution) loaded in the system in order to obtain stable flows. This is studied more deeply in this thesis. The results of the current work bring some new insights into deformation dynamics and intermittency in rapid granular shear flows. The experimental apparatus is modified in comparison to earlier investigations. The measurements produce data for various quantities continuously sampled from the start of shearing to the end. Static failure and dynamic shearing ofa granular medium is investigated. The results of this work revealed some important features of failure dynamics and structure formation in the system. Furthermore, some computer simulations are performed in a 2D annulus to examine the nature of kinetic energy dissipation. It is found that turbulent flow models can statistically represent rapid granular flows with high accuracy. In addition to academic outcomes and scientific publications our results have a number of technological applications associated with grinding, mining and massive grain storages.
Resumo:
In this Master’s Thesis work the rheological properties of different polysaccharide gels have been studied. The results of this study are used as a starting point for further investigations of potential applications. In order to understand rheological behavior of studied materials, the commercial hydrocolloids such as sodium carboxymethyl cellulose, xanthan gum and guar gum were used as reference and comparison material for rheological studies. As a part the rheological research the development and implementation of proper measurement methods for studied materials were carried out. In the literature review, short introductions of studied materials and application areas of rheological modifiers are summarized. In addition, basic rheological concepts and key fundamentals are explained. In the experimental part the focus was on the rheological characterization of aqueous suspensions of studied materials. Especially, gel strength and solution stability were investigated. The rheological measurements included both rotational and oscillatory measurements in different conditions, where several chemical and physical properties were measured with Anton Paar MCR302 dynamic rotational rheometer. Studied polysaccharide gels can be clearly defined to be shear thinning and thixotropic materials. They have strong gel forming properties even at low concentrations, which explains the superior thickening behavior for some of the samples. Along with rheological characterization of selected materials the factors behind different phenomena were investigated. To reveal value and potential use of polysaccharide gels the influence of various factors such as concentration, temperature and ionic strength were determined. The measurements showed a clear difference between studied materials under investigated external parameters.
Resumo:
The last few years have proved that Vertical Axis Wind Turbines (VAWTs) are more suitable for urban areas than Horizontal Axis Wind Turbines (HAWTs). To date, very little has been published in this area to assess good performance and lifetime of VAWTs either in open or urban areas. At low tip speed ratios (TSRs<5), VAWTs are subjected to a phenomenon called 'dynamic stall'. This can really affect the fatigue life of a VAWT if it is not well understood. The purpose of this paper is to investigate how CFD is able to simulate the dynamic stall for 2-D flow around VAWT blades. During the numerical simulations different turbulence models were used and compared with the data available on the subject. In this numerical analysis the Shear Stress Transport (SST) turbulence model seems to predict the dynamic stall better than the other turbulence models available. The limitations of the study are that the simulations are based on a 2-D case with constant wind and rotational speeds instead of considering a 3-D case with variable wind speeds. This approach was necessary for having a numerical analysis at low computational cost and time. Consequently, in the future it is strongly suggested to develop a more sophisticated model that is a more realistic simulation of a dynamic stall in a three-dimensional VAWT.
Resumo:
A novel X-ray rheometer based on a parallel plate geometry is described. This system allows time-resolved X-ray scattering intensity data to be obtained from polymeric samples subjected to shear flow. The range of quantitative structural parameters, such as molecular orientation and inter chain correlations, which can be obtained from the data is highlighted. Examples of the utility of X-ray scattering in examining optically opaque samples and the extraction of 〈P2〉 and 〈P4〉 orientation parameters are given using anisotropic hydroxypropylcellulose solutions as the sample.
Resumo:
Transient responses of electrorheological fluids to square-wave electric fields in steady shear are investigated by computational simulation method. The structure responses of the fluids to the field with high frequency are found to be very similar to that to the field with very low frequency or the sudden applied direct current field. The stress rise processes are also similar in both cases and can be described by an exponential expression. The characteristic time tau of the stress response is found to decrease with the increase of the shear rate (gamma) over dot and the area fraction of the particles phi(2). The relation between them can be roughly expressed as tau proportional to(gamma) over dot(-3/4)phi(2)(-3/2). The simulation results are compared with experimental measurements. The aggregation kinetics of the particles in steady shear is also discussed according to these results.
Resumo:
Yellow passion fruit pulp is unstable, presenting phase separation that can be avoided by the addition of hydrocolloids. For this purpose, xanthan and guar gum [0.3, 0.7 and 1.0% (w/w)] were added to yellow passion fruit pulp and the changes in the dynamic and steady-shear rheological behavior evaluated. Xanthan dispersions showed a more pronounced pseudoplasticity and the presence of yield stress, which was not observed in the guar gum dispersions. Cross model fitting to flow curves showed that the xanthan suspensions also had higher zero shear viscosity than the guar suspensions, and, for both gums, an increase in temperature led to lower values for this parameter. The gums showed different behavior as a function of temperature in the range of 5-35 degrees C. The activation energy of the apparent viscosity was dependent on the shear rate and gum concentration for guar, whereas for xanthan these values only varied with the concentration. The mechanical spectra were well described by the generalized Maxwell model and the xanthan dispersions showed a more elastic character than the guar dispersions, with higher values for the relaxation time. Xanthan was characterized as a weak gel, while guar presented a concentrated solution behavior. The simultaneous evaluation of temperature and concentration showed a stronger influence of the polysaccharide concentration on the apparent viscosity and the G` and G `` moduli than the variation in temperature.
Resumo:
Reusing scrap tires has become a worldwide challenge, especially due to the great difficulty in finding ecologically and economically feasible ways to dispose of them. This has led to the creation of specific programs and legislation for reusing scrap tires. Research has shown that a certain percentage of scrap tire rubber can be added to asphalt compositions, and this has become a worldwide practice. This paper describes the properties of four asphalt compositions modified with scrap tire rubber (STR) prepared in the laboratory. These properties are then compared with those of asphalt modified with styrene butadiene styrene (SBS), a synthetic polymer and one of the most common modifiers, to verify the feasibility of using scrap tire rubber as a substitute for SBS. The scope of this study does not include an analysis of how STR affects end-of-life asphalt. The main findings indicate that STR is a potential substitute of SBS in paving material, and although it does not meet some of the standard specifications when compared with SBS, these issues can be overcome by proper care during storage and transportation. The substitution of SBS by STR also showed the potential for about 10% in expenditure savings. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Carvalho, FLP, Carvalho, MCGA, Simao, R, Gomes, TM, Costa, PB, Neto, LB, Carvalho, RLP, and Dantas, EHM. Acute effects of a warm-up including active, passive, and dynamic stretching on vertical jump performance. J Strength Cond Res 26(9): 2447-2452, 2012-The purpose of this study was to examine the acute effects of 3 different stretching methods combined with a warm-up protocol on vertical jump performance. Sixteen young tennis players (14.5 +/- 2.8 years; 175 +/- 5.6 cm; 64.0 +/- 11.1 kg) were randomly assigned to 4 different experimental conditions on 4 successive days. Each session consisted of a general and specific warm-up, with 5 minutes of running followed by 10 jumps, accompanied by one of the subsequent conditions: (a) Control Condition (CC)-5 minutes of passive rest; (b) Passive Stretching Condition (PSC)-5 minutes of passive static stretching; (c) Active Stretching Condition (ASC)-5 minutes of active static stretching; and (d) Dynamic Stretching Condition (DC)-5 minutes of dynamic stretching. After each intervention, the subjects performed 3 squat jumps (SJs) and 3 countermovement jumps (CMJs), which were measured electronically. For the SJ, 1-way repeated measures analysis of variance (CC x PSC x ASC x DC) revealed significant decreases for ASC (28.7 +/- 4.7 cm; p = 0.01) and PSC (28.7 +/- 4.3 cm; p = 0.02) conditions when compared with CC (29.9 +/- 5.0 cm). For CMJs, there were no significant decreases (p > 0.05) when all stretching conditions were compared with the CC. Significant increases in SJ performance were observed when comparing the DC (29.6 +/- 4.9 cm; p = 0.02) with PSC (28.7 +/- 4.3 cm). Significant increases in CMJ performance were observed when comparing the conditions ASC (34.0 +/- 6.0 cm; p = 0.04) and DC (33.7 +/- 5.5 cm; p = 0.03) with PSC (32.6 +/- 5.5 cm). A dynamic stretching intervention appears to be more suitable for use as part of a warm-up in young athletes.