954 resultados para WHEAT-FLOUR
Resumo:
Mode of access: Internet.
Resumo:
The potential of spinosad as a grain protectant for the lesser grain borer, Rhyzopertha dominica, was investigated in a silo-scale trial on wheat stored in Victoria, Australia. Rhyzopertha dominica is a serious pest of stored grain, and its resistance to protectants and the fumigant phosphine is becoming more common. This trial follows earlier laboratory research showing that spinosad may be a useful pest management option for this species. Wheat (300 t) from the 2005 harvest was treated with spinosad 0.96 mg/kg plus chlorpyrifos-methyl 10 mg/kg in March 2006, and samples were collected at intervals during 7.5 month storage to determine efficacy and residues in wheat and milling fractions. Chlorpyrifos-methyl is already registered in Australia for control of several other pest species, and its low potency against R. dominica was confirmed in laboratory-treated wheat. Grain moisture content was stable at about 10%, but grain temperature ranged from 29.3°C in March to 14.0°C in August. Bioassays of all treated wheat samples over 7.5 months resulted in 100% adult mortality after 2 weeks exposure and no live progeny were produced. In addition, no live grain insects were detected during outload sampling after a 9 month storage. Spinosad and chlorpyrifos-methyl residues tended to decline during storage, and residues were higher in the bran layer than in either wholemeal or white flour. This field trial confirmed that spinosad was effective as a grain protectant targeting R. dominica.
Resumo:
BACKGROUND Our aim was to ascertain the potential of sulfuryl fluoride (SF) as an alternative fumigant to manage phosphine-resistant pests. We tested the susceptibility of all life stages of red flour beetle, Tribolium castaneum (Herbst), to SF and assessed the presence of cross-resistance to this fumigant in phosphine-resistant strains of this species. RESULTS Analysis of dose–response data indicated that the egg was the stage most tolerant to SF under a 48 h exposure period. At LC50, eggs were 29 times more tolerant than other immature stages and adults, and required a relatively high concentration of 48.2 mg L−1 for complete mortality. No significant differences in tolerance to SF were observed among the three larval instars, pupae and adults, and all of these stages were controlled at a low concentration of 1.32 mg L−1. Phosphine-resistant strains did not show cross-resistance to SF. CONCLUSION Our research concluded that the current maximum registered rate of SF, 1500 gh m−3, is adequate to control all the post-embryonic life stages of T. castaneum over a 48 h fumigation period, but it will fail to achieve complete mortality of eggs, indicating the risk of some survival of eggs under this short exposure period. As there is no cross-resistance to SF in phosphine-resistant insects, it will play a key role in managing phosphine resistance in stored-grain insect pests. © 2014 Commonwealth of Australia. Pest Management Science © 2014 Society of Chemical Industry
Resumo:
There is no information on the effect of sulfuryl fluoride (SF) on durum wheat technological properties and products made from fumigated durum wheat. Durum wheat and semolina were exposed to a range of SF applications under conditions that might be typically encountered in bulk storage facilities used in many countries. SF greatly reduced the germination percentage of fumigated durum wheat with increasing impact under higher SF concentration, grain moisture content, and fumigation temperature. SF greatly reduced seed germination percentage impacting more the higher the SF concentration. SF had little to no effects on grain test weight, 1000 grain weight, hardness, protein content, semolina ash content and mixograph properties. At the highest SF concentration (31.25 mg/L for 48 h) there was a tendency for pasta cooking loss to be increased but still acceptable while other pasta properties were largely unaffected. Fumigation with SF did not have any impact on the baking properties of a wholemeal durum flour-commercial flour mix. Therefore, SF is not recommended if the grains are to be used as seeds for agricultural production but for the production of semolina, pasta and bread, SF used under typical fumigation conditions has little to no impact on technological properties of durum wheat.
Resumo:
Field experiments were conducted over 3 years to study the effect of applying triazole and strobilurin fungicides on the bread-making quality of Malacca winter wheat. Averaged over all years the application of a fungicide programme increased yields, particularly when strobilurin fungicides were applied. Reductions in protein concentration, sulphur concentration, Hageberg failing number and loaf volumes also occurred as the amount of fungicide applied increased. However, there were no deleterious effects of fungicide application on sodium dodecyl sulphate (SDS) sedimentation volumes, N:S ratios or dough theology. Effects of fungicide application on bread-making quality were not product specific. Therefore, it appears that new mechanisms to explain strobilurin effects on bread-making quality do not need to be invoked. Where reductions in protein concentration did occur they could be compensated for by a late-season application of nitrogen either as granular ammonium nitrate at flag leaf emergence or foliar urea at anthesis. These applications, however, sometimes increased the N:S ratio of the extracted flour and failed to improve loaf volume. Multiple regression analysis revealed that main effects of year, flour protein concentration and N:S ratio could explain 93% of the variance in loaf volume caused by season, fungicide and nitrogen treatments. However, an equally good fit was achieved by just including sulphur concentration with year. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The rheological properties of dough and gluten are important for end-use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small-deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G'], large negative loadings for tan delta and steady state compliance [J(e)(0)]), the presence of high molecular weight glutenin subunits (HMW-GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high-end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.
Resumo:
The relationships between wheat protein quality and baking properties of 20 flour samples were studied for two breadmaking processes; a hearth bread test and the Chorleywood Bread Process (CBP). The strain hardening index obtained from dough inflation measurements, the proportion of unextractable polymeric protein, and mixing properties were among the variables found to be good indicators of protein quality and suitable for predicting potential baking quality of wheat flours. By partial least squares regression, flour and dough test variables were able to account for 71-93% of the variation in crumb texture, form ratio and volume of hearth loaves made using optimal mixing and fixed proving times. These protein quality variables were, however, not related to the volume of loaves produced by the CBP using mixing to constant work input and proving to constant height. On the other hand, variation in crumb texture of CBP loaves (54-55%) could be explained by protein quality. The results underline that the choice of baking procedure and loaf characteristics is vital in assessing the protein quality of flours. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Field experiments were conducted over 3 years to study the effect of applying triazole and strobilurin fungicides on the bread-making quality of Malacca winter wheat. Averaged over all years the application of a fungicide programme increased yields, particularly when strobilurin fungicides were applied. Reductions in protein concentration, sulphur concentration, Hageberg failing number and loaf volumes also occurred as the amount of fungicide applied increased. However, there were no deleterious effects of fungicide application on sodium dodecyl sulphate (SDS) sedimentation volumes, N:S ratios or dough theology. Effects of fungicide application on bread-making quality were not product specific. Therefore, it appears that new mechanisms to explain strobilurin effects on bread-making quality do not need to be invoked. Where reductions in protein concentration did occur they could be compensated for by a late-season application of nitrogen either as granular ammonium nitrate at flag leaf emergence or foliar urea at anthesis. These applications, however, sometimes increased the N:S ratio of the extracted flour and failed to improve loaf volume. Multiple regression analysis revealed that main effects of year, flour protein concentration and N:S ratio could explain 93% of the variance in loaf volume caused by season, fungicide and nitrogen treatments. However, an equally good fit was achieved by just including sulphur concentration with year. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Relaxation behavior was measured for dough, gluten and gluten protein fractions obtained from the U.K. biscuitmaking flour, Riband, and the U.K. breadmaking flour, Hereward. The relaxation spectrum, in which relaxation times (tau) are related to polymer molecular size, for dough showed a broad molecular size distribution, with two relaxation processes: a major peak at short times and a second peak at times longer than 10 sec, which is thought to correspond to network structure, and which may be attributed to entanglements and physical cross-links of polymers. Relaxation spectra of glutens were similar to those for the corresponding doughs from both flours. Hereward gluten clearly showed a much more pronounced second peak in relaxation spectrum and higher relaxation modulus than Riband gluten at the same water content. In the gluten protein fractions, gliadin and acetic acid soluble glutenin only showed the first relaxation process, but gel protein clearly showed both the first and second relaxation processes. The results show that the relaxation properties of dough depend on its gluten protein and that gel protein is responsible for the network structure for dough and gluten.
Resumo:
The polymer conformation structure of gluten extracted from a Polish wheat cultivar, Korweta, and gluten subtractions obtained from 2 U.K. breadmaking and biscuit flour cultivars, Hereward and Riband, was investigated using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The results showed the conformation of proteins varied between flour, hydrated flour, and hydrated gluten. The beta-sheet structure increased progressively from flour to hydrated flour and to hydrated gluten. In hydrated gluten protein fractions comprising gliadin, soluble glutenin, and gel protein, beta-sheet structure increased progressively from soluble gliadin and glutenin to gluten and gel protein; beta-sheet content was also greater in the gel protein from the breadmaking flour Hereward than the biscuit flour Riband.
Resumo:
The high pressure liquid chromatography method for determination of glutathione in free and protein-bound forms was re-established and has successfully been developed to measure glutathione related thiol compounds, i.e. L-cysteine, gamma-L-glutamyl-L-cysteine and L-cysteinyl-L-glycine, in both free and protein-bound forms. The natural levels of those compounds in typical strong, weak flours, and flours from 36 wheat varieties grown in the UK were investigated. The total free and protein-bound glutathione compounds found in the 36 UK varieties was 358 +/- 51 and 190 +/- 17 nmol/g, respectively. Multiple correlation analysis did not show a clear-cut relationship between the natural level of glutathione and any related thiol compound in either free or protein-bound forms and flour quality attributes, including rheological properties, baking performance, protein content and SDS sedimentation test values. Therefore, it can be suggested that glutathione and related thiol compounds at natural levels do not lead to significant differences in the rheological properties of dough and the baking performance of flour. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Baking and 2-g mixograph analyses were performed for 55 cultivars (19 spring and 36 winter wheat) from various quality classes from the 2002 harvest in Poland. An instrumented 2-g direct-drive mixograph was used to study the mixing characteristics of the wheat cultivars. A number of parameters were extracted automatically from each mixograph trace and correlated with baking volume and flour quality parameters (protein content and high molecular weight glutenin subunit [HMW-GS] composition by SDS-PAGE) using multiple linear regression statistical analysis. Principal component analysis of the mixograph data discriminated between four flour quality classes, and predictions of baking volume were obtained using several selected mixograph parameters, chosen using a best subsets regression routine, giving R-2 values of 0.862-0.866. In particular, three new spring wheat strains (CHD 502a-c) recently registered in Poland were highly discriminated and predicted to give high baking volume on the basis of two mixograph parameters: peak bandwidth and 10-min bandwidth.
Resumo:
The starchy endosperm is the major storage tissue in the mature wheat grain and exhibits quantitative and qualitative gradients in composition, with the outermost cell layers being rich in protein, mainly gliadins, and the inner cells being low in protein but enriched in high-molecular-weight (HMW) subunits of glutenin. We have used sequential pearling to produce flour fractions enriched in particular cell layers to determine the protein gradients in four different cultivars grown at two nitrogen levels. The results show that the steepness of the protein gradient is determined by both genetic and nutritional factors, with three high-protein breadmaking cultivars being more responsive to the N treatment than a low-protein cultivar suitable for livestock feed. Nitrogen also affected the relative abundances of the three main classes of wheat prolamins: the sulfur-poor ω-gliadins showed the greatest response to nitrogen and increased evenly across the grain; the HMW subunits also increased in response to nitrogen but proportionally more in the outer layers of the starchy endosperm than near the core, while the sulfur-rich prolamins showed the opposite trend.
Resumo:
Crude enzymes produced via solid state fermentation (SSF) using wheat milling by-products have been employed for both fermentation media production using flour-rich waste (FRW) streams and lysis of Rhodosporidium toruloides yeast cells. Filter sterilization of crude hydrolysates was more beneficial than heat sterilization regarding yeast growth and microbial oil production. The initial carbon to free amino nitrogen ratio of crude hydrolysates was optimized (80.2 g/g) in fed-batch cultures of R. toruloides leading to a total dry weight of 61.2 g/L with microbial oil content of 61.8 % (w/w). Employing a feeding strategy where the glucose concentration was maintained in the range of 12.2 – 17.6 g/L led to the highest productivity (0.32 g/L∙h). The crude enzymes produced by SSF were utilised for yeast cell treatment leading to simultaneous release of around 80% of total lipids in the broth and production of a hydrolysate suitable as yeast extract replacement.
Resumo:
Lipidomic analyses of milling and pearling fractions from wheat grain were carried out to determine differences in composition which could relate to the spatial distribution of lipids in the grain. Free fatty acids and triacylglycerols were major components in all fractions, but the relative contents of polar lipids varied, particularly lysophosphatidyl choline and digalactosyldiglyceride, which were enriched in flour fractions. By contrast, minor phospholipids were enriched in bran and offal fractions. The most abundant fatty acids in the analysed acyl lipids were C16:0 and C18:2 and their combinations, including C36:4 and C34:2. Phospholipids and galactolipids have been reported to have beneficial properties for bread making, while free fatty acids and triacylglycerols are considered detrimental. The subtle differences in the compositions of fractions determined in the present study could therefore underpin the production of flour fractions with optimised compositions for different end uses.