991 resultados para WEED-CONTROL
Resumo:
Chicory (Cichorium intybus L.) is an important broadleaves vegetable, consumed in salads and recognized by nutritional, pharmacological properties and its low calorie value. With the objective of assessing weeds interference periods over chicory crop in indirect sowing, two experiments were carried out at Garça County, São Paulo State, by using “Folhas Amarelas - Radiche” and “Folha Larga” cultivars and spacing of 0.25×0.25 m. Treatments consisted of checks with and without weeds and infestation control periods, so that crop was maintained in presence or absence of coexistence with weeds until 7, 14, 21, 28 and 35 days after seedlings transplant (DAST). Results demonstrated that “Folhas amarelas - Radiche” and “Folha Larga” chicory cultivars transplanted on winter, allowed occurrence of initial period of cohabitation with weeds (6 and 5 IPCW) greater than final period (14 and 9 FPCW), conferring, respectively, the establishment of critical periods for weed control (CPWC) in intervals of 6th to 14th and 5th to 9th days after crop transplant. Medium reduction of yield in function of weeds interference during the whole crop cycle was about 52.0% and 54.4%, respectively, for “Folhas amarelas - Radiche” and “Folha Larga” cultivars. It is important to mention that these results indicated the real need for conducting early weed control in chicory crop cultivation, even when carried out in indirect sowing system, as well as it characterizes the importance of a greater number of regional information to successfully consolidate management alternatives, less costly and more efficient in order to guarantee superior yields.
Resumo:
The purpose of this study was to evaluate various herbicides for corn injury and weed control when applied preemergence and postemergence.
Resumo:
The purpose of this study was to evaluate various herbicides for corn injury and weed control when applied preemergence and postemergence.
Resumo:
The purpose of this study was to evaluate various herbicides and application timings in soybean for crop injury and weed control.
Resumo:
Weed control in recreation areas is a complex public land management issue. Colorado State Parks are managed for both recreation and conservation, which often conflict. Noxious weeds affect both recreation and conservation efforts, and Parks often use herbicides to control these weeds. While herbicides are effective, they can be harmful to the environment and human health. Herbicide use at State Parks was reviewed to determine if chemical control is effective, safe, and efficient. The results revealed that many Parks are not using effective herbicides to treat noxious weeds and that some weed management plans lack pertinent information on chemical control. The results and recommendations provided can be used to improve the success of noxious weed control and create healthier Parks.
Resumo:
Two field experiments were carried out in Taveuni, Fiji to study the effects of mucuna (Mucuna pruriens) and grass fallow systems at 6 and 12 month durations on changes in soil properties (Experiment 1) and taro yields (Experiment 2). Biomass accumulation of mucuna fallow crop was significantly higher (P<0.05) than grass fallow crop at both 6 and 12 month durations. The longer fallow duration resulted in higher (P<0.05) total soil organic carbon, total soil nitrogen and earthworm numbers regardless of fallow type. Weed suppression in taro grown under mucuna was significantly greater (P<0.05) than under natural grass fallow. Taro grown under mucuna fallow significantly outyielded taro grown under grass fallow (11.8 vs. 8.8 t ha-1). Also, the gross margin of taro grown under mucuna fallow was 52% higher than that of taro grown under grass fallow. © ISHS.
Resumo:
Wheat occupies a principal place in the diet of humans globally, contributing more to our daily calorie and protein intake than any other crop. For this reason, preventing weed induced yield losses in wheat has high significance for world food sustainability. Herbicides and tillage play an important role in weed control, but their use has often unacceptable consequences for humans and the wider environment. Additionally, the range of herbicides effective on key weeds is dwindling due to the evolution of herbicide resistance. Elevating crop competitiveness against weeds, through a combination of wheat breeding and innovative planting design (planting density, row spacing and orientation), has strong potential to reduce weed-induced yield losses in wheat. The last decade of research has provided a solid foundation for the breeding of weed suppressive wheat cultivars, and continued research in this area should be a focus for the future. In the interim, there is cause for optimism that weeds can be effectively suppressed using existing wheat varieties, through careful cultivar selection and choice of planting design. Further research is required to define the nature of relationships between cultivar traits and competitive planting strategies, across diverse weed flora in multiple countries, sites and seasons. Investment in such innovation promises to produce benefits, not only in terms of sustained wheat yields, but also in terms of human and ecosystem health, through ameliorating chemical and sediment contamination, soil degradation, and CO2 pollution.
Resumo:
The aim of this study was to investigate the behavior of the association between atrazine and glyphosate in the soil through mineralization and degradation tests. Soil treatments consisted of the combination of a field dose of glyphosate (2.88 kg ha-1) with 0, 1/2, 1 and 2 times a field dose of atrazine (3.00 kg ha-1) and a field dose of atrazine with 0, 1/2, 1 and 2 times a field dose of glyphosate. The herbicide mineralization rates were measured after 0, 3, 7, 14, 21, 28, 35, 42, 49, 56 and 63 days of soil application, and degradation rates after 0, 7, 28 and 63 days. Although glyphosate mineralization rate was higher in the presence of 1 (one) dose of atrazine when compared with glyphosate alone, no significant differences were found when half or twice the atrazine dose was applied, meaning that differences in glyphosate mineralization rates cannot be attributed to the presence of atrazine. On the other hand, the influence of glyphosate on atrazine mineralization was evident, since increasing doses of glyphosate increased the atrazine mineralization rate and the lowest dose of glyphosate accelerated atrazine degradation.
Resumo:
Only 7% of the once extensive forest along the eastern coast of Brazil remains, and much of that is degraded and threatened by agricultural expansion and urbanization. We wondered if methods similar to those developed to establish fast-growing Eucalyptus plantations might also work to enhance survival and growth of rainforest species on degraded pastures composed of highly competitive C(4) grasses. An 8-factor experiment was laid out to contrast the value of different intensities of cultivation, application of fertilizer and weed control on the growth and survival of a mixture of 20 rainforest species planted at two densities: 3 m x 1 m, and 3 m x 2 m. Intensive management increased seedling survival from 90% to 98%, stemwood production and leaf area index (LAI) by similar to 4-fold, and stemwood production per unit of light absorbed by 30%. Annual growth in stem biomass was closely related to LAI alone (r(2) = 0.93, p < 0.0001), and the regression improved further in combination with canopy nitrogen content (r(2) =0.99, p < 0.0001). Intensive management resulted in a nearly closed forest canopy in less than 4 years, and offers a practical means to establish functional forests on abandoned agricultural land. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Eucalyptus is the dominant and most productive planted forest in Brazil, covering around 3.4 million ha for the production of charcoal, pulp, sawtimber, timber plates, wood foils, plywood and for building purposes. At the early establishment of the forest plantations, during the second half of the 1960s, the eucalypt yield was 10 m(3) ha(-1) y(-1). Now, as a result of investments in research and technology, the average productivity is 38 m3 ha(-1) y(-1). The productivity restrictions are related to the following environmental factors, in order of importance: water deficits > nutrient deficiency > soil depth and strength. The clonal forests have been fundamental in sites with larger water and nutrient restrictions, where they out-perform those established from traditional seed-based planting stock. When the environmental limitations are small the productivities of plantations based on clones or seeds appear to be similar. In the long term there are risks to sustainability, because of the low fertility and low reserves of primary minerals in the soils, which are, commonly, loamy and clayey oxisols and ultisols. Usually, a decline of soil quality is caused by management that does not conserve soil and site resources, damages soil physical and chemical characteristics, and insufficient or unbalanced fertiliser management. The problem is more serious when fast-growing genotypes are planted, which have a high nutrient demand and uptake capacity, and therefore high nutrient output through harvesting. The need to mobilise less soil by providing more cover and protection, reduce the nutrient and organic matter losses, preserve crucial physical properties as permeability ( root growth, infiltration and aeration), improve weed control and reduce costs has led to a progressive increase in the use of minimum cultivation practices during the last 20 years, which has been accepted as a good alternative to keep or increase site quality in the long term. In this paper we provide a synthesis and critical appraisal of the research results and practical implications of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations arising from the Brazilian context.
Resumo:
The diversity of endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane plants and its isoline was evaluated by cultivation followed by amplified rDNA restriction analysis (ARDRA) of randomly selected strains. Transgenic and non-transgenic cultivars and their crop management (herbicide application or manual weed control) were used to assess the possible non-target effects of genetically modified sugarcane on the fungal endophytic community. A total of 14 ARDRA haplotypes were identified in the endophytic community of sugarcane. Internal transcribed spacer (ITS) sequencing revealed a rich community represented by 12 different families from the Ascomycota phylum. Some isolates had a high sequence similarity with genera that are common endophytes in tropical climates, such as Cladosporium, Epicoccum, Fusarium, Guignardia, Pestalotiopsis and Xylaria. Analysis of molecular variance indicated that fluctuations in fungal population were related to both transgenic plants and herbicide application. While herbicide applications quickly induced transient changes in the fungal community, transgenic plants induced slower changes that were maintained over time. These results represent the first draft on composition of endophytic filamentous fungi associated with sugarcane plants. They are an important step in understanding the possible effects of transgenic plants and their crop management on the fungal endophytic community.
Resumo:
Glyphosate is a wide spectrum, non-selective, post-emergence herbicide. It acts on the shikimic acid pathway inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), thus obstructing the synthesis of tryptophan, phenylalanine, tyrosine and other secondary products, leading to plant death. Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.)] expressing an glyphosate-insensitive EPSPS enzyme has provided new opportunities for weed control in soybean production. The effect of glyphosate application on chlorophyll level, lipid peroxidation, catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GOPX) and superoxide dismutase (SOD) activities, soluble amino acid levels and protein profile, in leaves and roots, was examined in two conventional (non-GR) and two transgenic (GR) soybean. Glyphosate treatment had no significant impact on lipid peroxidation, whilst the chlorophyll content decreased in only one non-GR cultivar. However, there was a significant increase in the levels of soluble amino acid in roots and leaves, more so in non-GR than in GR soybean cultivars. Root CAT activity increased in non-GR cultivars and was not altered in GR cultivars. In leaves, CAT activity was inhibited in one non-GR and one GR cultivar. GOPX activity increased in one GR cultivar and in both non-GR cultivars. Root APX activity increased in one GR cultivar. The soluble protein profiles as assessed by 1-D gel electrophoresis of selected non-GR and GR soybean lines were unaffected by glyphosate treatment. Neither was formation of new isoenzymes of SOD and CAT observed when these lines were treated by glyphosate. The slight oxidative stress generated by glyphosate has no relevance to plant mortality. The potential antioxidant action of soluble amino acids may be responsible for the lack of lipid peroxidation observed. CAT activity in the roots and soluble amino acids in the leaves can be used as indicators of glyphosate resistance.
Resumo:
The area of private land suitable and available for growing hoop pine (Araucaria cunninghamii) on the Atherton Tablelands in North Queensland was modelled using a geographic information system (GIS). In Atherton, Eacham and Herberton shires, approximately 64,700 ha of privately owned land were identified as having a mean annual rainfall and soil type similar to Forestry Plantations Queensland (FPQ) hoop pine growth plots with an approximate growth rate of 20 m3 per annum. Land with slope of over 25° and land covered with native vegetation were excluded in the estimation. If land which is currently used for high-value agriculture is also excluded, the net area of land potentially suitable and available for expansion of hoop pine plantations is approximately 22,900 ha. Expert silvicultural advice emphasized the role of site preparation and weed control in affecting the long-term growth rate of hoop pine. Hence, sites with less than optimal fertility and rainfall may be considered as being potentially suitable for growing hoop pine at a lower growth rate. The datasets had been prepared at various scales and differing precision for their description of land attributes. Therefore, the results of this investigation have limited applicability for planning at the individual farm level but are useful at the regional level to target areas for plantation expansion.