981 resultados para WATER DEMAND
Développement des bétons autoplaçants à faible teneur en poudre, Éco-BAP: formulation et performance
Resumo:
Abstract : Although concrete is a relatively green material, the astronomical volume of concrete produced worldwide annually places the concrete construction sector among the noticeable contributors to the global warming. The most polluting constituent of concrete is cement due to its production process which releases, on average, 0.83 kg CO[subscript 2] per kg of cement. Self-consolidating concrete (SCC), a type of concrete that can fill in the formwork without external vibration, is a technology that can offer a solution to the sustainability issues of concrete industry. However, all of the workability requirements of SCC originate from a higher powder content (compared to conventional concrete) which can increase both the cost of construction and the environmental impact of SCC for some applications. Ecological SCC, Eco-SCC, is a recent development combing the advantages of SCC and a significantly lower powder content. The maximum powder content of this concrete, intended for building and commercial construction, is limited to 315 kg/m[superscript 3]. Nevertheless, designing Eco-SCC can be challenging since a delicate balance between different ingredients of this concrete is required to secure a satisfactory mixture. In this Ph.D. program, the principal objective is to develop a systematic design method to produce Eco-SCC. Since the particle lattice effect (PLE) is a key parameter to design stable Eco-SCC mixtures and is not well understood, in the first phase of this research, this phenomenon is studied. The focus in this phase is on the effect of particle-size distribution (PSD) on the PLE and stability of model mixtures as well as SCC. In the second phase, the design protocol is developed, and the properties of obtained Eco-SCC mixtures in both fresh and hardened states are evaluated. Since the assessment of robustness is crucial for successful production of concrete on large-scale, in the final phase of this work, the robustness of one the best-performing mixtures of Phase II is examined. It was found that increasing the volume fraction of a stable size-class results in an increase in the stability of that class, which in turn contributes to a higher PLE of the granular skeleton and better stability of the system. It was shown that a continuous PSD in which the volume fraction of each size class is larger than the consecutive coarser class can increase the PLE. Using such PSD was shown to allow for a substantial increase in the fluidity of SCC mixture without compromising the segregation resistance. An index to predict the segregation potential of a suspension of particles in a yield stress fluid was proposed. In the second phase of the dissertation, a five-step design method for Eco-SCC was established. The design protocol started with the determination of powder and water contents followed by the optimization of sand and coarse aggregate volume fractions according to an ideal PSD model (Funk and Dinger). The powder composition was optimized in the third step to minimize the water demand while securing adequate performance in the hardened state. The superplasticizer (SP) content of the mixtures was determined in next step. The last step dealt with the assessment of the global warming potential of the formulated Eco-SCC mixtures. The optimized Eco-SCC mixtures met all the requirements of self-consolidation in the fresh state. The 28-day compressive strength of such mixtures complied with the target range of 25 to 35 MPa. In addition, the mixtures showed sufficient performance in terms of drying shrinkage, electrical resistivity, and frost durability for the intended applications. The eco-performance of the developed mixtures was satisfactory as well. It was demonstrated in the last phase that the robustness of Eco-SCC is generally good with regards to water content variations and coarse aggregate characteristics alterations. Special attention must be paid to the dosage of SP during batching.
Resumo:
Face ao aumento que se tem vindo a observar da população, especialmente a população flutuante, e a alteração nos hábitos de consumo de água, com destaque para os últimos 20 anos, a região do Algarve poderá enfrentar em anos secos um cenário onde a disponibilidade de recursos hídricos naturais seja reduzida face à procura. Em 2005 foi desenvolvido um plano de contingência para o Sistema Multimunicipal de Abastecimento de Água do Algarve (SMAAA). O plano prevê a possibilidade de reactivação de antigas captações subterrâneas municipais para reforço do abastecimento público em situações de contingência nesta região. A presente dissertação apresenta a avaliação dos principais impactos das projecções dos modelos de clima para o fim do século no SMAAA, nomeadamente ao nível da disponibilidade de água na origem e da procura de água para consumo humano, e a adaptação do plano de contingência face a esses impactos. /RESUME: Faced with a population increase, special one related with tourism, and also with changes in water consumption habits that has been occurring mostly in the last 20 years, the Algarve region in hydrologic dry years may face serious water shortage in a scenario where water resources are scarce. Being so, in 2005 a contingency plan was developed for the Algarve's Multimunicipal Bulk System (AMBS). The plan includes the possibility of reactivating old water capitations, to reinforce the water public distribution upon contingency situation in the region. The present dissertation evaluates the main impacts of the climatic change forecasted by model projections throughout the end of the century on the AMBS, Iooking more specifically at the water availability and the water demand for public consumption, and the adaptation of the contingency plan to those impacts.
Resumo:
El mayor consumo de agua en Costa Rica ocurre en el Valle Central, pues ahíestá asentada cerca del 60% de la población del país. Sin embargo, la disponibilidad de agua está disminuyendo debido al crecimiento demográfico y al decreciente volumen de los ríos y aguas subterráneas.El Valle Central posee cerca de 57 ríos que podrían utilizarse como fuente de agua potable. pero sólo 10 de ellos tienen sus nacientes ubicadas en bosques primarios y son adecuadas para este fin. Las nacientes de la mayoría de los otros ríos se encuentran en tierras económicamente improductivas, tales como pastizales y áreas de bosques muy alterados, que pierden su volumen de agua durante la estación seca.Las proyecciones de crecimiento demográfico hasta el año 2100 permiten visualizar un marcado incremento en la demanda de agua, el cual se mantendrá durante los próximos 50 años. Consecuentemente, para proporcionar un adecuado suministro de agua para esta creciente población. es fundamental detener la contaminación de las aguas subterráneas y recobrar el volumen de agua de los ríos.En este trabajo se propone un plan sencillo para aumentar el volumen de agua de los ríos del Valle Central y para proteger nuestros acuíferos. Se mencionan también otros beneficios económicos y sociales que tendría la aplicación de esta propuesta.Abstract: About 60% of the popuiation of Costa Rica lives in the Central Valley where consequcntly occurs the highest water consumption. As a contrast water shortness is increasing in this country due to population growth and diminishing volume of river and subterranean water.There are about 57 rivers in the Central Valley that could be used as a source of water but only 10 of them have their headwaters inside primary forest and are appropriate for this purpose. The headwaters of mosi of the nvers lay in underproductive lands such as grass fields and very disturbed forest and bose their water volume during dry season.Population growth estimates until year 2100 allow foreseeing a high rate of increase in water demand for the next 50 years. In order to have an adequate supply of water for ihis expanding population it is mandatory to stop subterranean water pollution and to recovcr nver water volume.In this paper 1 propose a simple plan to augment the water volume of the headwaters of the rivers of the Central Valley and to protect our subterranean water sources. Other social and economic benefits that stem from this plan are also analyzed.
Resumo:
Riding the wave of recent groundbreaking achievements, artificial intelligence (AI) is currently the buzzword on everybody’s lips and, allowing algorithms to learn from historical data, Machine Learning (ML) emerged as its pinnacle. The multitude of algorithms, each with unique strengths and weaknesses, highlights the absence of a universal solution and poses a challenging optimization problem. In response, automated machine learning (AutoML) navigates vast search spaces within minimal time constraints. By lowering entry barriers, AutoML emerged as promising the democratization of AI, yet facing some challenges. In data-centric AI, the discipline of systematically engineering data used to build an AI system, the challenge of configuring data pipelines is rather simple. We devise a methodology for building effective data pre-processing pipelines in supervised learning as well as a data-centric AutoML solution for unsupervised learning. In human-centric AI, many current AutoML tools were not built around the user but rather around algorithmic ideas, raising ethical and social bias concerns. We contribute by deploying AutoML tools aiming at complementing, instead of replacing, human intelligence. In particular, we provide solutions for single-objective and multi-objective optimization and showcase the challenges and potential of novel interfaces featuring large language models. Finally, there are application areas that rely on numerical simulators, often related to earth observations, they tend to be particularly high-impact and address important challenges such as climate change and crop life cycles. We commit to coupling these physical simulators with (Auto)ML solutions towards a physics-aware AI. Specifically, in precision farming, we design a smart irrigation platform that: allows real-time monitoring of soil moisture, predicts future moisture values, and estimates water demand to schedule the irrigation.
Resumo:
Water scarcity is a long-standing problem in Catalonia, as there are significant differences in the spatial and temporal distribution of water through the territory. There has consequently been a debate for many years about whether the solution to water scarcity must be considered in terms of efficiency or equity, the role that the public sector must play and the role that market-based instruments should play in water management. The aim of this paper is to use a Computable General Equilibrium (CGE) model to analyze the advantages and disadvantages associated with different policy instruments, from both a supply and a demand viewpoint, which can be applied to water management in Catalonia. We also introduce an ecological sector in our CGE model, allowing us to analyze the environmental impact of the alternative policies simulated. The calibration of the exogenous variables of the CGE model is performed by using a Social Accounting Matrix (SAM) for the Catalan economy with 2001 data. The results suggest that taking into account the principle of sustainability of the resource, the policy debate between supply and demand in water policies is obsolete, and a new combination of policies is required to respect the different values associated with water. Keywords: Water Policies; Computable General Equilibrium Model; Economic Effects; Environmental Effects.
Resumo:
Demands are one of the most uncertain parameters in a water distribution network model. A good calibration of the model demands leads to better solutions when using the model for any purpose. A demand pattern calibration methodology that uses a priori information has been developed for calibrating the behaviour of demand groups. Generally, the behaviours of demands in cities are mixed all over the network, contrary to smaller villages where demands are clearly sectorised in residential neighbourhoods, commercial zones and industrial sectors. Demand pattern calibration has a final use for leakage detection and isolation. Detecting a leakage in a pattern that covers nodes spread all over the network makes the isolation unfeasible. Besides, demands in the same zone may be more similar due to the common pressure of the area rather than for the type of contract. For this reason, the demand pattern calibration methodology is applied to a real network with synthetic non-geographic demands for calibrating geographic demand patterns. The results are compared with a previous work where the calibrated patterns were also non-geographic.
Resumo:
Effluents and surface waters around an area involved with the inking of tissues at Itatiba municipality, São Paulo State, Brazil, were chemically analyzed with the purpose of evaluating the influence on the water quality of the chemicals released, as well to provide answers to legislative requirements related to the São Paulo State Register 997 published on 31 May 1976.
Resumo:
"ISWS/RI-116/91."
Resumo:
With the global population projected to reach 9 billion in 2050, demand for food is expected to increase by over 50% in 2030 and 70% in 2050 (UN-Water, 2013). Already agriculture is the largest user of water with irrigation accounting for nearly 70% of all freshwater withdrawals (UN-Water, 2016).
Resumo:
In this work the archaea and eubacteria community of a hypersaline produced water from the Campos Basin that had been transported and discharged to an onshore storage facility was evaluated by 16S recombinant RNA (rRNA) gene sequence analysis. The produced water had a hypersaline salt content of 10 (w/v), had a carbon oxygen demand (COD) of 4,300 mg/l and contains phenol and other aromatic compounds. The high salt and COD content and the presence of toxic phenolic compounds present a problem for conventional discharge to open seawater. In previous studies, we demonstrated that the COD and phenolic content could be largely removed under aerobic conditions, without dilution, by either addition of phenol degrading Haloarchaea or the addition of nutrients alone. In this study our goal was to characterize the microbial community to gain further insight into the persistence of reservoir community members in the produced water and the potential for bioremediation of COD and toxic contaminants. Members of the archaea community were consistent with previously identified communities from mesothermic reservoirs. All identified archaea were located within the phylum Euryarchaeota, with 98 % being identified as methanogens while 2 % could not be affiliated with any known genus. Of the identified archaea, 37 % were identified as members of the strictly carbon-dioxide-reducing genus Methanoplanus and 59 % as members of the acetoclastic genus Methanosaeta. No Haloarchaea were detected, consistent with the need to add these organisms for COD and aromatic removal. Marinobacter and Halomonas dominated the eubacterial community. The presence of these genera is consistent with the ability to stimulate COD and aromatic removal with nutrient addition. In addition, anaerobic members of the phyla Thermotogae, Firmicutes, and unclassified eubacteria were identified and may represent reservoir organisms associated with the conversion hydrocarbons to methane.
Resumo:
Determining reference concentrations in rivers and streams is an important tool for environmental management. Reference conditions for eutrophication-related water variables are unavailable for Brazilian freshwaters. We aimed to establish reference baselines for So Paulo State tropical rivers and streams for total phosphorus (TP) and nitrogen (TN), nitrogen-ammonia (NH(4) (+)) and Biochemical Oxygen Demand (BOD) through the best professional judgment and the trisection methods. Data from 319 sites monitored by the So Paulo State Environmental Company (2005 to 2009) and from the 22 Water Resources Management Units in So Paulo State were assessed (N = 27,131). We verified that data from different management units dominated by similar land cover could be analyzed together (Analysis of Variance, P = 0.504). Cumulative frequency diagrams showed that industrialized management units were characterized by the worst water quality (e.g. average TP of 0.51 mg/L), followed by agricultural watersheds. TN and NH(4) (+) were associated with urban percentages and population density (Spearman Rank Correlation Test, P < 0.05). Best professional judgment and trisection (median of lower third of all sites) methods for determining reference concentrations showed agreement: 0.03 & 0.04 mg/L (TP), 0.31 & 0.34 mg/L (TN), 0.06 & 0.10 mg-N/L (NH(4) (+)) and 2 & 2 mg/L (BOD), respectively. Our reference concentrations were similar to TP and TN reference values proposed for temperate water bodies. These baselines can help with water management in So Paulo State, as well as providing some of the first such information for tropical ecosystems.
Resumo:
This paper describes the development of an optimization model for the management and operation of a large-scale, multireservoir water supply distribution system with preemptive priorities. The model considers multiobjectives and hedging rules. During periods of drought, when water supply is insufficient to meet the planned demand, appropriate rationing factors are applied to reduce water supply. In this paper, a water distribution system is formulated as a network and solved by the GAMS modeling system for mathematical programming and optimization. A user-friendly interface is developed to facilitate the manipulation of data and to generate graphs and tables for decision makers. The optimization model and its interface form a decision support system (DSS), which can be used to configure a water distribution system to facilitate capacity expansion and reliability studies. Several examples are presented to demonstrate the utility and versatility of the developed DSS under different supply and demand scenarios, including applications to one of the largest water supply systems in the world, the Sao Paulo Metropolitan Area Water Supply Distribution System in Brazil.
Resumo:
A dynamic systems simulation model of water resources was developed as a tool to help analyze alternatives to water resources management for the Piracicaba, Capivari and Jundiai River Water Basins (RB-PCJ), and used to run six 50-year simulations from 2004 to 2054. The model estimates water supply and demand, as well as contamination load by several consumers. Six runs were performed using a constant mean precipitation value, changing water supply and demand and different volumes diverted from RB-PCJ to RB-Alto Tiet. For the Business as Usual scenario, the Sustainability Index went from 0.44 in 2004 to 0.20 by 2054. The Water Sustainability Index changed from 74% in 2004 to 131% by 2054. The Falkenmark Index changed from 1,403 m(3) person (-aEuro parts per thousand 1) year (-aEuro parts per thousand 1) in 2004 to 734 m(3) person (-aEuro parts per thousand 1) year (-aEuro parts per thousand 1) by 2054. We concluded that sanitation is one of the major problems for the PCJ River Basins.
Resumo:
Retention of green leaf area in grain sorghum under post-anthesis drought, known as stay-green, is associated with greater biomass production, lodging resistance and yield. The stay-green phenomenon can be examined at a cell, leaf, or whole plant level. At a cell level, the retention of chloroplast proteins such as LHCP2, OEC33 and Rubisco until late in senescence has been reported in sorghum containing the KS19 source of stay-green, indicating that photosynthesis may be maintained for longer during senescence in these genotypes. At a leaf level, longevity of photosynthetic apparatus is intimately related to nitrogen (N) status. At a whole plant level, stay-green can be viewed as a consequence of the balance between N demand by the grain and N supply during grain filling. To examine some of these concepts, nine hybrids varying in the B35 and KS19 sources of stay-green were grown under a postanthesis water deficit. Genotypic variation in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen (SLN) and N uptake during grain filling. Matching N supply from age-related senescence and N uptake during grain tilling with grain N demand found that the shortfall in N supply for grain filling was greater in the senescent than stay-green hybrids, resulting in more accelerated leaf senescence in the former. We hypothesise that increased N uptake by stay-green hybrids is a result of greater biomass accumulation during grain filling in response to increased sink demand (higher grain numbers) which, in turn, is the result of increased radiation use efficiency and transpiration efficiency due to higher SLN. Delayed leaf senescence resulting from higher SLN should, in turn, allow snore carbon and nitrogen to be allocated to the roots of stay-green hybrids during grain filling, thereby maintaining a greater capacity to extract N from the soil compared with senescent hybrids.