976 resultados para Volatility models
Resumo:
This study analyzes the issue of American option valuation when the underlying exhibits a GARCH-type volatility process. We propose the usage of Rubinstein's Edgeworth binomial tree (EBT) in contrast to simulation-based methods being considered in previous studies. The EBT-based valuation approach makes an implied calibration of the pricing model feasible. By empirically analyzing the pricing performance of American index and equity options, we illustrate the superiority of the proposed approach.
Resumo:
Recent research has suggested that forecast evaluation on the basis of standard statistical loss functions could prefer models which are sub-optimal when used in a practical setting. This paper explores a number of statistical models for predicting the daily volatility of several key UK financial time series. The out-of-sample forecasting performance of various linear and GARCH-type models of volatility are compared with forecasts derived from a multivariate approach. The forecasts are evaluated using traditional metrics, such as mean squared error, and also by how adequately they perform in a modern risk management setting. We find that the relative accuracies of the various methods are highly sensitive to the measure used to evaluate them. Such results have implications for any econometric time series forecasts which are subsequently employed in financial decisionmaking.
Resumo:
We develop a general model to price VIX futures contracts. The model is adapted to test both the constant elasticity of variance (CEV) and the Cox–Ingersoll–Ross formulations, with and without jumps. Empirical tests on VIX futures prices provide out-of-sample estimates within 2% of the actual futures price for almost all futures maturities. We show that although jumps are present in the data, the models with jumps do not typically outperform the others; in particular, we demonstrate the important benefits of the CEV feature in pricing futures contracts. We conclude by examining errors in the model relative to the VIX characteristics
Resumo:
Quantile forecasts are central to risk management decisions because of the widespread use of Value-at-Risk. A quantile forecast is the product of two factors: the model used to forecast volatility, and the method of computing quantiles from the volatility forecasts. In this paper we calculate and evaluate quantile forecasts of the daily exchange rate returns of five currencies. The forecasting models that have been used in recent analyses of the predictability of daily realized volatility permit a comparison of the predictive power of different measures of intraday variation and intraday returns in forecasting exchange rate variability. The methods of computing quantile forecasts include making distributional assumptions for future daily returns as well as using the empirical distribution of predicted standardized returns with both rolling and recursive samples. Our main findings are that the Heterogenous Autoregressive model provides more accurate volatility and quantile forecasts for currencies which experience shifts in volatility, such as the Canadian dollar, and that the use of the empirical distribution to calculate quantiles can improve forecasts when there are shifts
Resumo:
In 2007 futures contracts were introduced based upon the listed real estate market in Europe. Following their launch they have received increasing attention from property investors, however, few studies have considered the impact their introduction has had. This study considers two key elements. Firstly, a traditional Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, the approach of Bessembinder & Seguin (1992) and the Gray’s (1996) Markov-switching-GARCH model are used to examine the impact of futures trading on the European real estate securities market. The results show that futures trading did not destabilize the underlying listed market. Importantly, the results also reveal that the introduction of a futures market has improved the speed and quality of information flowing to the spot market. Secondly, we assess the hedging effectiveness of the contracts using two alternative strategies (naïve and Ordinary Least Squares models). The empirical results also show that the contracts are effective hedging instruments, leading to a reduction in risk of 64 %.
Resumo:
This paper models the transmission of shocks between the US, Japanese and Australian equity markets. Tests for the existence of linear and non-linear transmission of volatility across the markets are performed using parametric and non-parametric techniques. In particular the size and sign of return innovations are important factors in determining the degree of spillovers in volatility. It is found that a multivariate asymmetric GARCH formulation can explain almost all of the non-linear causality between markets. These results have important implications for the construction of models and forecasts of international equity returns.
Resumo:
This paper explores a number of statistical models for predicting the daily stock return volatility of an aggregate of all stocks traded on the NYSE. An application of linear and non-linear Granger causality tests highlights evidence of bidirectional causality, although the relationship is stronger from volatility to volume than the other way around. The out-of-sample forecasting performance of various linear, GARCH, EGARCH, GJR and neural network models of volatility are evaluated and compared. The models are also augmented by the addition of a measure of lagged volume to form more general ex-ante forecasting models. The results indicate that augmenting models of volatility with measures of lagged volume leads only to very modest improvements, if any, in forecasting performance.
Resumo:
This article examines the role of idiosyncratic volatility in explaining the cross-sectional variation of size- and value-sorted portfolio returns. We show that the premium for bearing idiosyncratic volatility varies inversely with the number of stocks included in the portfolios. This conclusion is robust within various multifactor models based on size, value, past performance, liquidity and total volatility and also holds within an ICAPM specification of the risk–return relationship. Our findings thus indicate that investors demand an additional return for bearing the idiosyncratic volatility of poorly-diversified portfolios.
Resumo:
In this paper, we study the role of the volatility risk premium for the forecasting performance of implied volatility. We introduce a non-parametric and parsimonious approach to adjust the model-free implied volatility for the volatility risk premium and implement this methodology using more than 20 years of options and futures data on three major energy markets. Using regression models and statistical loss functions, we find compelling evidence to suggest that the risk premium adjusted implied volatility significantly outperforms other models, including its unadjusted counterpart. Our main finding holds for different choices of volatility estimators and competing time-series models, underlying the robustness of our results.
Resumo:
This paper characterizes the dynamics of jumps and analyzes their importance for volatility forecasting. Using high-frequency data on four prominent energy markets, we perform a model-free decomposition of realized variance into its continuous and discontinuous components. We find strong evidence of jumps in energy markets between 2007 and 2012. We then investigate the importance of jumps for volatility forecasting. To this end, we estimate and analyze the predictive ability of several Heterogenous Autoregressive (HAR) models that explicitly capture the dynamics of jumps. Conducting extensive in-sample and out-of-sample analyses, we establish that explicitly modeling jumps does not significantly improve forecast accuracy. Our results are broadly consistent across our four energy markets, forecasting horizons, and loss functions
Resumo:
This paper deals with the testing of autoregressive conditional duration (ACD) models by gauging the distance between the parametric density and hazard rate functions implied by the duration process and their non-parametric estimates. We derive the asymptotic justification using the functional delta method for fixed and gamma kernels, and then investigate the finite-sample properties through Monte Carlo simulations. Although our tests display some size distortion, bootstrapping suffices to correct the size without compromising their excellent power. We show the practical usefulness of such testing procedures for the estimation of intraday volatility patterns.
Resumo:
The aim of this article is to assess the role of real effective exchange rate volatility on long-run economic growth for a set of 82 advanced and emerging economies using a panel data set ranging from 1970 to 2009. With an accurate measure for exchange rate volatility, the results for the two-step system GMM panel growth models show that a more (less) volatile RER has significant negative (positive) impact on economic growth and the results are robust for different model specifications. In addition to that, exchange rate stability seems to be more important to foster long-run economic growth than exchange rate misalignment
Resumo:
Using intraday data for the most actively traded stocks on the São Paulo Stock Market (BOVESPA) index, this study considers two recently developed models from the literature on the estimation and prediction of realized volatility: the Heterogeneous Autoregressive Model of Realized Volatility (HAR-RV), developed by Corsi (2009), and the Mixed Data Sampling model (MIDAS-RV), developed by Ghysels et al. (2004). Using measurements to compare in-sample and out-of-sample forecasts, better results were obtained with the MIDAS-RV model for in-sample forecasts. For out-of-sample forecasts, however, there was no statistically signi cant di¤erence between the models. We also found evidence that the use of realized volatility induces distributions of standardized returns that are closer to normal
Resumo:
Questa tesi è incentrata sull'analisi della formula di Dupire, che permette di ottenere un'espressione della volatilità locale, nei modelli di Lévy esponenziali. Vengono studiati i modelli di mercato Merton, Kou e Variance Gamma dimostrando che quando si è off the money la volatilità locale tende ad infinito per il tempo di maturità delle opzioni che tende a zero. In particolare viene proposta una procedura di regolarizzazione tale per cui il processo di volatilità locale di Dupire ricrea i corretti prezzi delle opzioni anche quando si ha la presenza di salti. Infine tale risultato viene provato numericamente risolvendo il problema di Cauchy per i prezzi delle opzioni.
Resumo:
This paper empirically assesses whether monetary policy affects real economic activity through its affect on the aggregate supply side of the macroeconomy. Analysts typically argue that monetary policy either does not affect the real economy, the classical dichotomy, or only affects the real economy in the short run through aggregate demand new Keynesian or new classical theories. Real business cycle theorists try to explain the business cycle with supply-side productivity shocks. We provide some preliminary evidence about how monetary policy affects the aggregate supply side of the macroeconomy through its affect on total factor productivity, an important measure of supply-side performance. The results show that monetary policy exerts a positive and statistically significant effect on the supply-side of the macroeconomy. Moreover, the findings buttress the importance of countercyclical monetary policy as well as support the adoption of an optimal money supply rule. Our results also prove consistent with the effective role of monetary policy in the Great Moderation as well as the more recent rise in productivity growth.