118 resultados para Vivers ornamentals
Resumo:
Litchi ( Litchi chinensis Sonn.) is a tropical to subtropical crop that originated in South-East Asia. Litchi fruit are prized on the world market for their flavour, semi-translucent white aril and attractive red skin. Litchi is now grown commercially in many countries and production in Australia, China, Israel, South Africa and Thailand has expanded markedly in recent years. Increased production has made significant contributions to economic development in these countries, especially those in South-East Asia. Non-climacteric litchi fruit are harvested at their visual and organoleptic optimum. They are highly perishable and, consequently, have a short life that limits marketability and potential expansion of demand. Pericarp browning and pathological decay are common and important defects of harvested litchi fruit. Postharvest technologies have been developed to reduce these defects. These technologies involve cooling and heating the fruit, use of various packages and packaging materials and the application of fungicides and other chemicals. Through the use of fungicides and refrigeration, litchi fruit have a storage life of about 30 days. However, when they are removed from storage, their shelf life at ambient temperature is very short due to pericarp browning and fruit rotting. Low temperature acclimation or use of chitsoan as a coating can extend the shelf life. Sulfur dioxide fumigation effectively reduces pericarp browning, but approval from Europe, Australia and Japan for this chemical is likely to be withdrawn due to concerns over sulfur residues in fumigated fruit. Thus, sulfur-free postharvest treatments that maintain fruit skin colour are increasingly important. Alternatives to SO2 fumigation for control of pericarp browning and fruit rotting are pre-storage pathogen management, anoxia treatment, and dipping in 2% hydrogen chloride solution for 6-8 min following storage at 0 degrees C. Insect disinfestation has become increasingly important for the expansion of export markets because of quarantine issues associated with some fruit fly species. Thus, effective disinfestation protocols need to be developed. Heat treatment has shown promise as a quarantine technology, but it injures pericarp tissue and results in skin browning. However, heat treatment can be combined with an acid dip treatment that inhibits browning. Therefore, the primary aim of postharvest litchi research remains the achievement of highly coloured fruit which is free of pests and disease. Future research should focus on disease control before harvest, combined acid and heat treatments after harvest and careful temperature management during storage and transport.
Resumo:
'Specking' on harvested freesia (Freesia hybrida) flowers is a problem worldwide. The disease is caused by the fungal pathogen Botrytis cinerea. This disease symptom detracts from appearance and reduces marketability of the flowers. Unlike other important cut flower crops (e.g. gerbera), the mode of infection and epidemiology of postharvest freesia flower specking caused by B. cinerea has not been reported. Epidemiological studies were carried out under simulated conditions typical of those occurring during postharvest handling of freesia flowers. Infection of freesia flowers by B. cinerea occurred when a conidium germinated, formed a germ tube(s) and penetrated epidermal cells. Fungal hyphae then colonised adjacent cells, resulting in visible lesions. Different host reactions were observed on freesia 'Cote d'Azur' petals at 20 degrees C compared to 5 degrees C. The infection process was relatively rapid at 20 degrees C, with visible lesions produced within 7 h of incubation. However, lesion expansion ceased after 24 h of incubation. Infection was slower at 5 degrees C, with visible lesions produced after 48 h of incubation. However, lesion development at 5 degrees C was continuous, with lesions expanding over 4 days. Light microscopy observations revealed increased host defence reactions during infection. These reactions involved production of phenolic compounds, probably lignin and/or callose, around infection sites. Such substances may play a role in restricting petal colonisation and lesion expansion. Disease severity and lesion numbers on freesia flowers incubated at 12 degrees C were higher, but not significantly higher (P > 0.05), than on those incubated at 20 degrees C. Disease severity and progression were differentially mediated by temperature and relative humidity (R. H.). Infection of freesia flowers was severe at 100% R. H. for all three incubation temperatures of 5, 12 and 20 degrees C. In contrast, no lesions were produced at 80 to 90% R. H. at either 5 or 20 degrees C.
Resumo:
The longevity of Grevillea 'Sylvia' inflorescences can be very short and is influenced by exposure to ethylene. Gibberellic acid has the potential to delay senescence in some cut flowers by acting as an anti-ethylene treatment. Gibberellic acid was therefore applied to Grevillea 'Sylvia' inflorescences in vase solutions to determine its effects on longevity. Treatments with gibberellic acid did not prolong the longevity of inflorescences or influence 1-aminocyclopropane-1-carboxylic acid concentrations. Treatments at high gibberellic acid concentrations enhanced flower abscission and we therefore conclude that vase-applied gibberellic acid treatments are not suitable for extending the longevity of cut Grevillea 'Sylvia' inflorescences.
Resumo:
Grevillea 'Crimson Yul-lo' inflorescences have cut flower potential, but their vase life is short. End of vase life is characterized by early wilting. The possibility of physiologically mediated stem end blockage was investigated. Hydraulic conductance of 2 cm long stem end segments declined rapidly and remained lower throughout vase life than that of 2 cm long stem segments from immediately above. Recutting daily to remove basal 2 cm stem ends increased solution uptake, delayed declines in inflorescence water potential and water content, and improved inflorescence vase life. S-carvone is a potential inhibitor of wound related suberin formation, via inhibition of phenylalanine ammonia-lyase. Vase solution treatments with S-carvone (0.318 and 0.636 mM) delayed the decline in hydraulic conductance of basal 2 cm long stem end segments and decreases in vase solution uptake and relative fresh weight of cut stems, and extended vase life. Treatments with the catechol oxidase inhibitor 4-hexylresorcinol (2.5-10 mM) also delayed stem end blockage. These findings suggest that stem end blockage in cut G. 'Crimson Yul-lo' stems is physiologically mediated. (C) 2006 Elsevier B.V. All rights reserved.