974 resultados para Visual Tracking
Resumo:
Intelligent surveillance systems typically use a single visual spectrum modality for their input. These systems work well in controlled conditions, but often fail when lighting is poor, or environmental effects such as shadows, dust or smoke are present. Thermal spectrum imagery is not as susceptible to environmental effects, however thermal imaging sensors are more sensitive to noise and they are only gray scale, making distinguishing between objects difficult. Several approaches to combining the visual and thermal modalities have been proposed, however they are limited by assuming that both modalities are perfuming equally well. When one modality fails, existing approaches are unable to detect the drop in performance and disregard the under performing modality. In this paper, a novel middle fusion approach for combining visual and thermal spectrum images for object tracking is proposed. Motion and object detection is performed on each modality and the object detection results for each modality are fused base on the current performance of each modality. Modality performance is determined by comparing the number of objects tracked by the system with the number detected by each mode, with a small allowance made for objects entering and exiting the scene. The tracking performance of the proposed fusion scheme is compared with performance of the visual and thermal modes individually, and a baseline middle fusion scheme. Improvement in tracking performance using the proposed fusion approach is demonstrated. The proposed approach is also shown to be able to detect the failure of an individual modality and disregard its results, ensuring performance is not degraded in such situations.
Resumo:
It is possible for the visual attention characteristics of a person to be exploited as a biometric for authentication or identification of individual viewers. The visual attention characteristics of a person can be easily monitored by tracking the gaze of a viewer during the presentation of a known or unknown visual scene. The positions and sequences of gaze locations during viewing may be determined by overt (conscious) or covert (sub-conscious) viewing behaviour. This paper presents a method to authenticate individuals using their covert viewing behaviour, thus yielding a unique behavioural biometric. A method to quantify the spatial and temporal patterns established by the viewer for their covert behaviour is proposed utilsing a principal component analysis technique called `eigenGaze'. Experimental results suggest that it is possible to capture the unique visual attention characteristics of a person to provide a simple behavioural biometric.
Resumo:
This paper presents an image based visual servoing system that is intended to be used for tracking and obtaining scientific observations of the HIFiRE vehicles. The primary aim of this tracking platform is to acquire and track the thermal signature emitted from the surface of the vehicle during the re-entry phase of the mission using an infra-red camera. The implemented visual servoing scheme uses a classical image based approach to identify and track the target using visual kinematic control. The paper utilizes simulation and experimental results to show the tracking performance of the system using visual feedback. Discussions on current implementation and control techniques to further improve the performance of the system are also explored.
Resumo:
In this paper, we present a method for the recovery of position and absolute attitude (including pitch, roll and yaw) using a novel fusion of monocular Visual Odometry and GPS measurements in a similar manner to a classic loosely-coupled GPS/INS error state navigation filter. The proposed filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. An observability analysis of the proposed filter is performed, showing that the scale factor, position and attitude errors are fully observable under acceleration that is non-parallel to velocity vector in the navigation frame. The observability properties of the proposed filter are demonstrated using numerical simulations. We conclude the article with an implementation of the proposed filter using real flight data collected from a Cessna 172 equipped with a downwards-looking camera and GPS, showing the feasibility of the algorithm in real-world conditions.
Resumo:
This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the colour information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintaining it with a fixed safe distance and centred on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation
Resumo:
In this paper, we describe the development of an independent and on-board visual servoing system which allows a computationally impoverished aerial vehicle to autonomously identify and track a moving surface target. Our image segmentation and target identification algorithms were developed with the specific task of monitoring whales at sea but could be adapted for other targets. Observing whales is important for many marine biology tasks and is currently performed manually from the shore or from boats. We also present hardware experiments which demonstrate the capabilities of our algorithms for object identification and tracking that enable a flying vehicle to track a moving target.
Resumo:
This article provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process. We then present a taxonomy of visual servo control systems. The two major classes of systems, position-based and image-based systems, are then discussed in detail. Since any visual servo system must be capable of tracking image features in a sequence of images, we also include an overview of feature-based and correlation-based methods for tracking. We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control.
Resumo:
This paper presents an image-based visual servoing system that was used to track the atmospheric Earth re-entry of Hayabusa. The primary aim of this ground based tracking platform was to record the emission spectrum radiating from the superheated gas of the shock layer and the surface of the heat shield during re-entry. To the author's knowledge, this is the first time that a visual servoing system has successfully tracked a super-orbital re-entry of a spacecraft and recorded its pectral signature. Furthermore, we improved the system by including a simplified dynamic model for feed-forward control and demonstrate improved tracking performance on the International Space Station (ISS). We present comparisons between simulation and experimental results on different target trajectories including tracking results from Hayabusa and ISS. The required performance for tracking both spacecraft is demanding when combined with a narrow field of view (FOV). We also briefly discuss the preliminary results obtained from the spectroscopy of the Hayabusa's heat shield during re-entry.
Resumo:
This paper introduces an improved line tracker using IMU and vision data for visual servoing tasks. We utilize an Image Jacobian which describes motion of a line feature to corresponding camera movements. These camera motions are estimated using an IMU. We demonstrate impacts of the proposed method in challenging environments: maximum angular rate ~160 0/s, acceleration ~6m /s2 and in cluttered outdoor scenes. Simulation and quantitative tracking performance comparison with the Visual Servoing Platform (ViSP) are also presented.
Resumo:
The integration of separate, yet complimentary, cortical pathways appears to play a role in visual perception and action when intercepting objects. The ventral system is responsible for object recognition and identification, while the dorsal system facilitates continuous regulation of action. This dual-system model implies that empirically manipulating different visual information sources during performance of an interceptive action might lead to the emergence of distinct gaze and movement pattern profiles. To test this idea, we recorded hand kinematics and eye movements of participants as they attempted to catch balls projected from a novel apparatus that synchronised or de-synchronised accompanying video images of a throwing action and ball trajectory. Results revealed that ball catching performance was less successful when patterns of hand movements and gaze behaviours were constrained by the absence of advanced perceptual information from the thrower's actions. Under these task constraints, participants began tracking the ball later, followed less of its trajectory, and adapted their actions by initiating movements later and moving the hand faster. There were no performance differences when the throwing action image and ball speed were synchronised or de-synchronised since hand movements were closely linked to information from ball trajectory. Results are interpreted relative to the two-visual system hypothesis, demonstrating that accurate interception requires integration of advanced visual information from kinematics of the throwing action and from ball flight trajectory.
Resumo:
This work is motivated by the desire to covertly track mobile targets, either animal or human, in previously unmapped outdoor natural environments using off-road robotic platforms with a non-negligible acoustic signature. The use of robots for stealthy surveillance is not new. Many studies exist but only consider the navigation problem to maintain visual covertness. However, robotic systems also have a significant acoustic footprint from the onboard sensors, motors, computers and cooling systems, and also from the wheels interacting with the terrain during motion. All these can jepordise any visual covertness. In this work, we experimentally explore the concepts of opportunistically utilizing naturally occurring sounds within outdoor environments to mask the motion of a robot, and being visually covert whilst maintaining constant observation of the target. Our experiments in a constrained outdoor built environment demonstrate the effectiveness of the concept by showing a reduced acoustic signature as perceived by a mobile target allowing the robot to covertly navigate to opportunistic vantage points for observation.
Resumo:
This paper presents a 100 Hz monocular position based visual servoing system to control a quadrotor flying in close proximity to vertical structures approximating a narrow, locally linear shape. Assuming the object boundaries are represented by parallel vertical lines in the image, detection and tracking is achieved using Plücker line representation and a line tracker. The visual information is fused with IMU data in an EKF framework to provide fast and accurate state estimation. A nested control design provides position and velocity control with respect to the object. Our approach is aimed at high performance on-board control for applications allowing only small error margins and without a motion capture system, as required for real world infrastructure inspection. Simulated and ground-truthed experimental results are presented.
Resumo:
Sparse optical flow algorithms, such as the Lucas-Kanade approach, provide more robustness to noise than dense optical flow algorithms and are the preferred approach in many scenarios. Sparse optical flow algorithms estimate the displacement for a selected number of pixels in the image. These pixels can be chosen randomly. However, pixels in regions with more variance between the neighbours will produce more reliable displacement estimates. The selected pixel locations should therefore be chosen wisely. In this study, the suitability of Harris corners, Shi-Tomasi's “Good features to track", SIFT and SURF interest point extractors, Canny edges, and random pixel selection for the purpose of frame-by-frame tracking using a pyramidical Lucas-Kanade algorithm is investigated. The evaluation considers the important factors of processing time, feature count, and feature trackability in indoor and outdoor scenarios using ground vehicles and unmanned aerial vehicles, and for the purpose of visual odometry estimation.
Resumo:
This paper deals with constrained image-based visual servoing of circular and conical spiral motion about an unknown object approximating a single image point feature. Effective visual control of such trajectories has many applications for small unmanned aerial vehicles, including surveillance and inspection, forced landing (homing), and collision avoidance. A spherical camera model is used to derive a novel visual-predictive controller (VPC) using stability-based design methods for general nonlinear model-predictive control. In particular, a quasi-infinite horizon visual-predictive control scheme is derived. A terminal region, which is used as a constraint in the controller structure, can be used to guide appropriate reference image features for spiral tracking with respect to nominal stability and feasibility. Robustness properties are also discussed with respect to parameter uncertainty and additive noise. A comparison with competing visual-predictive control schemes is made, and some experimental results using a small quad rotor platform are given.
Resumo:
The mean shift tracker has achieved great success in visual object tracking due to its efficiency being nonparametric. However, it is still difficult for the tracker to handle scale changes of the object. In this paper, we associate a scale adaptive approach with the mean shift tracker. Firstly, the target in the current frame is located by the mean shift tracker. Then, a feature point matching procedure is employed to get the matched pairs of the feature point between target regions in the current frame and the previous frame. We employ FAST-9 corner detector and HOG descriptor for the feature matching. Finally, with the acquired matched pairs of the feature point, the affine transformation between target regions in the two frames is solved to obtain the current scale of the target. Experimental results show that the proposed tracker gives satisfying results when the scale of the target changes, with a good performance of efficiency.