410 resultados para Viscoelastic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of the present study were to determine the effect of firefighter's boots on the vertical component of the ground reaction force (GRF) at heel strike, also known as heel strike transient and to analyze the effect of the viscoelastic insoles placed into the firefighter’s boots on this force during the gait. The magnitude of the impact force (FZI) from the vertical ground reaction force, the time to the production of this force (TZI) and the loading rate (GC) were registered. 39 firefighters without any pathology during 2 years before the study were recruited. Three different walking conditions were tested: 1) gait with firefighter's boots, 2) gait with firefighter's boots and viscoelastic insoles and 3) gait with sport shoes. The results showed a higher production and magnitude of the impact force during gait with firefighter's boots than during gait with sport shoes (13,1 vs. 2,6 % of occurrence of the impact force and 61,39 ± 35,18 %BW (body weight) vs. 49,38 ± 22,99 %BW, respectively). The gait with viscoelastic insoles placed into the firefighter's boots did not show significant differences in any of the parameters characterizing the impact force compared to the gait without insoles. The results of this study show a lower cushioning of the impact force during the gait with firefighter's boots in comparison to the gait with sport shoes and the inefficiency of the viscoelastic insoles placed inside the firefighter's boots to ameliorate the cushioning of the impact force at natural walking speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the traceless Oldroyd viscoelastic model, the viscoelastic extra stress tensor is decomposed into its traceless (deviatoric) and spherical parts, leading to a reformulation of the classical Oldroyd model. The equivalence of the two models is established comparing model predictions for simple test cases. The new model is validated using several 2D benchmark problems. The structure and behavior of the new model are discussed and the future use of the new model in envisioned, both on the theoretical and numerical perspectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A specific modified constitutive equation for a third-grade fluid is proposed so that the model be suitable for applications where shear-thinning or shear-thickening may occur. For that, we use the Cosserat theory approach reducing the exact three-dimensional equations to a system depending only on time and on a single spatial variable. This one-dimensional system is obtained by integrating the linear momentum equation over the cross-section of the tube, taking a velocity field approximation provided by the Cosserat theory. From this reduced system, we obtain the unsteady equations for the wall shear stress and mean pressure gradient depending on the volume flow rate, Womersley number, viscoelastic coefficient and flow index over a finite section of the tube geometry with constant circular cross-section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A traceless variant of the Johnson-Segalman viscoelastic model is presented. The viscoelastic extra stress tensor is de composed into its traceless (deviatoric) and spherical parts, leading to a reformulation of the classical Johnson-Segalman model. The equivalente of the two models is established comparing model predictions for simple test cases. The new model is validated using several 2D benchmark problems.The structure and behavior of the new model are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is focused on the viscoelastic behavior of macro-synthetic fiber-reinforced concrete (MSFRC) with polypropylene studied numerically when subjected to temperature variations (-30 oC to +60 oC). LDPM (lattice discrete particle model), a meso-scale model for heterogeneous composites, is used. To reproduce the MSFRC structural behavior, an extended version of LDPM that includes fiber effects through fiber-concrete interface micromechanics, called LDPM-F, is applied. Model calibration is performed based on three-point bending, cube, and cylinder test for plain concrete and MSFRC. This is followed by a comprehensive literature study on the variation of mechanical properties with temperature for individual fibers and plain concrete. This literature study and past experimental test results constitute inputs for final numerical simulations. The numerical response of MSFRC three-point bending test is replicated and compared with the previously conducted experimental test results; finally, the conclusions were drawn. LDPM numerical model is successfully calibrated using experimental responses on plain concrete. Fiber-concrete interface micro-mechanical parameters are subsequently fixed and LDPM-F models are calibrated based on MSFRC three-point bending test at room temperature. Number of fibers contributing crack bridging mechanism is computed and found to be in good agreement with experimental counts. Temperature variations model for individual constituents of MSFRC, fibers and plain concrete, are implemented in LDPM-F. The model is validated for MSFRC three-point bending stress-CMOD (crack mouth opening) response reproduced at -30 oC, -15 oC, 0 oC, +20 oC, +40 oC and +60 oC. It is found that the model can well describe the temperature variation behavior of MSFRC. At positive temperatures, simulated responses are in good agreement. Slight disagreement in negative regimes suggests an in-depth study on fiber-matrix interface bond behavior with varying temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wormlike micelles formed by the addition to cetyltrimethylammonium bromide (CTAB) of a range of aromatic cosolutes with small molecular variations in their structure were systematically studied. Phenol and derivatives of benzoate and cinnamate were used, and the resulting mixtures were studied by oscillatory, steady-shear rheology, and the microstructure was probed by small-angle neutron scattering. The lengthening of the micelles and their entanglement result in remarkable viscoelastic properties, making rheology a useful tool to assess the effect of structural variations of the cosolutes on wormlike micelle formation. For a fixed concentration of CTAB and cosolute (200 mmol L(-1)), the relaxation time decreases in the following order: phenol > cinnamate> o-hydroxycinnamate > salicylate > o-methoxycinnamate > benzoate > o-methoxybenzoate. The variations in viscoelastic response are rationalized by using Mulliken population analysis to map out the electronic density of the cosolutes and quantify the barrier to rotation of specific groups on the aromatics. We find that the ability of the group attached to the aromatic ring to rotate is crucial in determining the packing of the cosolute at the micellar interface and thus critically impacts the micellar growth and, in turn, the rheological response. These results enable us for the first time to propose design rules for the self-assembly of the surfactants and cosolutes resulting in the formation of wormlike micelles with the cationic surfactant CTAB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi o estudo do efeito do Grau de Hidrólise (GH) do poli(vinil álcool) (PVA) nas propriedades dos filmes à base de blendas de gelatina suína e PVA com dois GH. Os filmes foram produzidos com soluções com 2 g de macromoléculas/100 g de solução, contendo 23,1 g de PVA.100 g-1 de macromoléculas e 25 g de glicerol/100 g de macromoléculas. As propriedades mecânicas e térmicas, cor, opacidade, umidade e solubilidade, além de espectros de infravermelho com transformada de Fourier (FTIR) dos filmes, foram estudadas. As soluções foram analisadas por reometria dinâmica. Os filmes produzidos com o PVA de menor GH foram mais higroscópicos e mais solúveis. Mas o tipo de PVA não afetou a cor, afetando a opacidade e o brilho dos filmes. O PVA com maior GH proporcionou filmes mais resistentes, e o PVA de menor GH produziu filmes mais resistentes à tração, embora menos deformáveis na perfuração. O GH do PVA não afetou a temperatura de transição vítrea dos filmes, determinada na primeira varredura, mas a afetou na segunda varredura. Os resultados das análises de FTIR corroborraram com esses resultados. As propriedades viscoelásticas das soluções não foram afetadas pelo GH do PVA, muito possivelmente por se tratar de soluções diluídas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho são investigadas as propriedades mecânicas de poliuretana derivada do óleo de mamona, utilizando a técnica de indentação instrumentada com penetradores de geometrias piramidal e esférica. Foi analisada a influência da forma do penetrador utilizado nos ensaios de indentação instrumentada para se obter valores das propriedades mecânicas de polímero derivado de óleo de mamona. Os penetradores utilizados são de pontas piramidais dos tipos Berkovich e canto de cubo e esférico de raio igual a 150 μm em um Nanoindenter XP TM com cargas aplicadas entre 1 e 200 mN. As penetrações variam de acordo com o formato do penetrador, sendo maiores para pontas agudas. A dureza e o módulo de elasticidade foram determinados, utilizando o método de Oliver e Pharr. Verificou-se que os valores medidos para a dureza são maiores para penetradores mais agudos. Os valores obtidos com a ponta piramidal Berkovich foram de 0,14 GPa para pequenas penetrações e 0,12 GPa para maiores penetrações. Já os valores obtidos com ponta canto de cubo foram 25 a 30% maiores. Isso está relacionado com os volumes das regiões que apresentam deformações plásticas elevadas, no caso de penetradores agudos comparados com os volumes das regiões que sofrem deformações viscoelásticas. A viscosidade aparente determinada, utilizando penetrador esférico em testes de força aplicada constante, é igual a (22 ± 2) × 10(12) Pa.s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

β-Casein and sodium caseinate stabilized emulsions were produced and had their rheological properties investigated as a function of the nature of the oil phase, ionic strength and pH. Oil phases of distinct structural characteristics, namely decane and vegetable oil of high triglyceride content, were assayed. The former was much more effectively emulsified than the latter. Effects of pH and ionic strength were minor. Emulsion rheological properties were strikingly distinct in each case, with viscoelastic, solid-like structures being formed with decane (G' >> G"), differently from what is observed for samples containing triglycerides as the oil phase, in which viscoelasticity was not even apparent. The relevance of the spatial features of the oil phase structure in the development of the emulsion viscoelastic character is discussed. Factors responding for the system distinct behaviour possibly reside at the emulsion droplet interface, unapproachable by optical microscopy, rather than on aspects related to particle size or shape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emulsões estabilizadas por 'beta'-caseína e sódio caseinato tiveram suas propriedades reológicas investigadas em função da natureza da fase oleosa, da força iônica e do pH. Fases oleosas de características estruturais distintas, a saber, decano e óleos vegetais de alto teor triglicerídico, foram ensaiadas. A emulsificação dos sistemas contendo decano foi significativamente mais efetiva do que aquela das amostras contendo triglicérides. Efeitos de pH e força iônica mostraram-se relativamente pouco importantes sobre a capacidade emulsificante da proteína. As propriedades reológicas foram marcadamente distintas em cada caso, com estruturas de caráter sólido (G' G") sendo produzidas com decano, diferentemente do que foi observado para amostras contendo triglicérides, nas quais a viscoelasticidade não foi nem mesmo aparente. A relevância de aspectos espaciais da estrutura da fase oleosa no desenvolvimento do caráter viscoelástico é discutida. Propõe-se que os fatores responsáveis pelo comportamento distinto observado residam possivelmente na interface gotícula/meio dispersante, inacessível por microscopia óptica, e guardam pouca relação com tamanho ou forma da gotícula.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to analyse the effects of a single stretching exercise session on a number of gait parameters ill elderly participants in all attempt to determine whether these exercises can influence the risk of fall. Fifteen healthy women living in the community Volunteered to participate in the study. A kinematic gait analysis was performed immediately before and after a session of static stretching exercises applied oil hip flexor/extensor muscles. Results showed a significant influence of stretching exercises on a number of gait parameters, which have previously been proposed as fall predictors. Participants showed increased gait velocity, greater step length and reduced double Support time during stance after performing stretching exercises, suggesting improved stability and mobility. Changes around the pelvis (increased anterior-posterior tilt and rotation range of motion) resulting from the stretching exercises were suggested to influence the gait parameters (velocity, step length and double support time). Therefore, stretching exercises were shown to be a promising strategy to facilitate changes in gait parameters related to the risk of fall. Some other gait variables related to the risk of fall remained Unaltered (e.g., toe clearance). The stable pattern of segmental angular velocities was proposed to explain the stability of these unchanged gait variables. The results indicate that stretching exercises, performed oil a regular (daily) basis, result in gait adaptations which can be considered as indicative of reduced fall risk. Other Studies to determine whether regular stretching routines are an effective strategy to reduce the risk of fall are required. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leakage reduction in water supply systems and distribution networks has been an increasingly important issue in the water industry since leaks and ruptures result in major physical and economic losses. Hydraulic transient solvers can be used in the system operational diagnosis, namely for leak detection purposes, due to their capability to describe the dynamic behaviour of the systems and to provide substantial amounts of data. In this research work, the association of hydraulic transient analysis with an optimisation model, through inverse transient analysis (ITA), has been used for leak detection and its location in an experimental facility containing PVC pipes. Observed transient pressure data have been used for testing ITA. A key factor for the success of the leak detection technique used is the accurate calibration of the transient solver, namely adequate boundary conditions and the description of energy dissipation effects since PVC pipes are characterised by a viscoelastic mechanical response. Results have shown that leaks were located with an accuracy between 4-15% of the total length of the pipeline, depending on the discretisation of the system model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research work focuses on the analysis of hydraulic transients in polyvinyl chloride (PVC) pipes, which are characterized by a viscoelastic rheological behavior. Transient pressure data were collected in a pipe rig consisting of a set of PVC pipes. The creep function of the PVC pipes was determined by using an inverse transient model based on collected transient pressure data and compared with that obtained by carrying out mechanical tensile tests of PVC pipe specimens. The numerical results obtained from the transient solver have shown that the attenuation, dispersion, and shape of transient pressures were well described. The incorporation of the viscoelastic mechanical behavior in the hydraulic transient model has provided an excellent fitting between numerical results and observed data. Calibrated creep function based on inverse analysis fit the one determined by mechanical tests well, which emphasized the importance of pipe-wall viscoelasticity in hydraulic transients in PVC pipes.