972 resultados para Virtual Reference Station (VRS)
Resumo:
Business Process Modelling is a fast growing field in business and information technology, which uses visual grammars to model and execute the processes within an organisation. However, many analysts present such models in a 2D static and iconic manner that is difficult to understand by many stakeholders. Difficulties in understanding such grammars can impede the improvement of processes within an enterprise due to communication problems. In this chapter we present a novel framework for intuitively visualising animated business process models in interactive Virtual Environments. We also show that virtual environment visualisations can be performed with present 2D business process modelling technology, thus providing a low barrier to entry for business process practitioners. Two case studies are presented from film production and healthcare domains that illustrate the ease with which these visualisations can be created. This approach can be generalised to other executable workflow systems, for any application domain being modelled.
Resumo:
Process modeling is a complex organizational task that requires many iterations and communication between the business analysts and the domain specialists involved in the process modeling. The challenge of process modeling is exacerbated, when the process of modeling has to be performed in a cross-organizational, distributed environment. Some systems have been developed to support collaborative process modeling, all of which use traditional 2D interfaces. We present an environment for collaborative process modeling, using 3D virtual environment technology. We make use of avatar instantiations of user ego centres, to allow for the spatial embodiment of the user with reference to the process model. We describe an innovative prototype collaborative process modeling approach, implemented as a modeling environment in Second Life. This approach leverages the use of virtual environments to provide user context for editing and collaborative exercises. We present a positive preliminary report on a case study, in which a test group modelled a business process using the system in Second Life.
Resumo:
A pragmatic method for assessing the accuracy and precision of a given processing pipeline required for converting computed tomography (CT) image data of bones into representative three dimensional (3D) models of bone shapes is proposed. The method is based on coprocessing a control object with known geometry which enables the assessment of the quality of resulting 3D models. At three stages of the conversion process, distance measurements were obtained and statistically evaluated. For this study, 31 CT datasets were processed. The final 3D model of the control object contained an average deviation from reference values of −1.07±0.52 mm standard deviation (SD) for edge distances and −0.647±0.43 mm SD for parallel side distances of the control object. Coprocessing a reference object enables the assessment of the accuracy and precision of a given processing pipeline for creating CTbased 3D bone models and is suitable for detecting most systematic or human errors when processing a CT-scan. Typical errors have about the same size as the scan resolution.
Resumo:
The impact of Web 2.0 and social networking tools such as virtual communities, on education has been much commented on. The challenge for teachers is to embrace these new social networking tools and apply them to new educational contexts. The increasingly digitally-abled student cohorts and the need for educational applications of Web 2.0 are challenges that overwhelm many educators. This chapter will make three important contributions. Firstly it will explore the characteristics and behaviours of digitally-abled students enrolled in higher education. An innovation of this chapter will be the appli- cation of Bourdieu’s notions of capital, particularly social, cultural and digital capital to understand these characteristics. Secondly, it will present a possible use of a commonly used virtual community, Facebook©. Finally it will offer some advice for educators who are interested in using popular social networking communities, similar to Facebook©, in their teaching and learning.
Resumo:
The paper provides an assessment of the performance of commercial Real Time Kinematic (RTK) systems over longer than recommended inter-station distances. The experiments were set up to test and analyse solutions from the i-MAX, MAX and VRS systems being operated with three triangle shaped network cells, each having an average inter-station distance of 69km, 118km and 166km. The performance characteristics appraised included initialization success rate, initialization time, RTK position accuracy and availability, ambiguity resolution risk and RTK integrity risk in order to provide a wider perspective of the performance of the testing systems. ----- ----- The results showed that the performances of all network RTK solutions assessed were affected by the increase in the inter-station distances to similar degrees. The MAX solution achieved the highest initialization success rate of 96.6% on average, albeit with a longer initialisation time. Two VRS approaches achieved lower initialization success rate of 80% over the large triangle. In terms of RTK positioning accuracy after successful initialisation, the results indicated a good agreement between the actual error growth in both horizontal and vertical components and the accuracy specified in the RMS and part per million (ppm) values by the manufacturers. ----- ----- Additionally, the VRS approaches performed better than the MAX and i-MAX when being tested under the standard triangle network with a mean inter-station distance of 69km. However as the inter-station distance increases, the network RTK software may fail to generate VRS correction and then may turn to operate in the nearest single-base RTK (or RAW) mode. The position uncertainty reached beyond 2 meters occasionally, showing that the RTK rover software was using an incorrect ambiguity fixed solution to estimate the rover position rather than automatically dropping back to using an ambiguity float solution. Results identified that the risk of incorrectly resolving ambiguities reached 18%, 20%, 13% and 25% for i-MAX, MAX, Leica VRS and Trimble VRS respectively when operating over the large triangle network. Additionally, the Coordinate Quality indicator values given by the Leica GX1230 GG rover receiver tended to be over-optimistic and not functioning well with the identification of incorrectly fixed integer ambiguity solutions. In summary, this independent assessment has identified some problems and failures that can occur in all of the systems tested, especially when being pushed beyond the recommended limits. While such failures are expected, they can offer useful insights into where users should be wary and how manufacturers might improve their products. The results also demonstrate that integrity monitoring of RTK solutions is indeed necessary for precision applications, thus deserving serious attention from researchers and system providers.
Resumo:
Ethernet is a key component of the standards used for digital process buses in transmission substations, namely IEC 61850 and IEEE Std 1588-2008 (PTPv2). These standards use multicast Ethernet frames that can be processed by more than one device. This presents some significant engineering challenges when implementing a sampled value process bus due to the large amount of network traffic. A system of network traffic segregation using a combination of Virtual LAN (VLAN) and multicast address filtering using managed Ethernet switches is presented. This includes VLAN prioritisation of traffic classes such as the IEC 61850 protocols GOOSE, MMS and sampled values (SV), and other protocols like PTPv2. Multicast address filtering is used to limit SV/GOOSE traffic to defined subsets of subscribers. A method to map substation plant reference designations to multicast address ranges is proposed that enables engineers to determine the type of traffic and location of the source by inspecting the destination address. This method and the proposed filtering strategy simplifies future changes to the prioritisation of network traffic, and is applicable to both process bus and station bus applications.
Resumo:
This paper reports an investigation of primary school children’s understandings about "square". 12 students participated in a small group teaching experiment session, where they were interviewed and guided to construct a square in a 3D virtual reality learning environment (VRLE). Main findings include mixed levels of "quasi" geometrical understandings, misconceptions about length and angles, and ambiguous uses of geometrical language for location, direction, and movement. These have implications for future teaching and learning about 2D shapes with particular reference to VRLE.
Resumo:
Objectives This study introduces and assesses the precision of a standardized protocol for anthropometric measurement of the juvenile cranium using three-dimensional surface rendered models, for implementation in forensic investigation or paleodemographic research. Materials and methods A subset of multi-slice computed tomography (MSCT) DICOM datasets (n=10) of modern Australian subadults (birth—10 years) was accessed from the “Skeletal Biology and Forensic Anthropology Virtual Osteological Database” (n>1200), obtained from retrospective clinical scans taken at Brisbane children hospitals (2009–2013). The capabilities of Geomagic Design X™ form the basis of this study; introducing standardized protocols using triangle surface mesh models to (i) ascertain linear dimensions using reference plane networks and (ii) calculate the area of complex regions of interest on the cranium. Results The protocols described in this paper demonstrate high levels of repeatability between five observers of varying anatomical expertise and software experience. Intra- and inter-observer error was indiscernible with total technical error of measurement (TEM) values ≤0.56 mm, constituting <0.33% relative error (rTEM) for linear measurements; and a TEM value of ≤12.89 mm2, equating to <1.18% (rTEM) of the total area of the anterior fontanelle and contiguous sutures. Conclusions Exploiting the advances of MSCT in routine clinical assessment, this paper assesses the application of this virtual approach to acquire highly reproducible morphometric data in a non-invasive manner for human identification and population studies in growth and development. The protocols and precision testing presented are imperative for the advancement of “virtual anthropology” into routine Australian medico-legal death investigation.
Resumo:
Mothers represent a large segment of marketing dollars and traditionally, word of mouth was spread from mother to mother in a face-to-face environment, such as the school car park or mother’s groups. As families have evolved, so too has the traditional mother’s group. Limited academic studies have explored online mothers’ groups and how they impact on consumption. In order to explore the nature of this online influence and how mothers are influenced by other mothers online, a study was conducted through the use of observation and qualitative questioning. The data suggests that trust between mothers is generally high and mothers tend to trust the opinions of other mothers when they recommend a product. This is similar in other reference group contexts, however, mothers are communicating about brands frequently and influencing behaviour. This leads to a number of managerial and theoretical implications discussed in the paper.
Resumo:
This thesis has developed a new approach to trace virtual protection signals in Electrical substation networks. The main goal of the research was to analyse the contents of the virtual signals transferred, using third party software. In doing so, a comprehensive test was done on a distance protection relay, using non-conventional test equipment.
Resumo:
Firstly, we would like to thank Ms. Alison Brough and her colleagues for their positive commentary on our published work [1] and their appraisal of our utility of the “off-set plane” protocol for anthropometric analysis. The standardized protocols described in our manuscript have wide applications, ranging from forensic anthropology and paleodemographic research to clinical settings such as paediatric practice and orthopaedic surgical design. We affirm that the use of geometrically based reference tools commonly found in computer aided design (CAD) programs such as Geomagic Design X® are imperative for more automated and precise measurement protocols for quantitative skeletal analysis. Therefore we stand by our recommendation of the use of software such as Amira and Geomagic Design X® in the contexts described in our manuscript...
Resumo:
Electrical Impedance Tomography (EIT) is a computerized medical imaging technique which reconstructs the electrical impedance images of a domain under test from the boundary voltage-current data measured by an EIT electronic instrumentation using an image reconstruction algorithm. Being a computed tomography technique, EIT injects a constant current to the patient's body through the surface electrodes surrounding the domain to be imaged (Omega) and tries to calculate the spatial distribution of electrical conductivity or resistivity of the closed conducting domain using the potentials developed at the domain boundary (partial derivative Omega). Practical phantoms are essentially required to study, test and calibrate a medical EIT system for certifying the system before applying it on patients for diagnostic imaging. Therefore, the EIT phantoms are essentially required to generate boundary data for studying and assessing the instrumentation and inverse solvers a in EIT. For proper assessment of an inverse solver of a 2D EIT system, a perfect 2D practical phantom is required. As the practical phantoms are the assemblies of the objects with 3D geometries, the developing of a practical 2D-phantom is a great challenge and therefore, the boundary data generated from the practical phantoms with 3D geometry are found inappropriate for assessing a 2D inverse solver. Furthermore, the boundary data errors contributed by the instrumentation are also difficult to separate from the errors developed by the 3D phantoms. Hence, the errorless boundary data are found essential to assess the inverse solver in 2D EIT. In this direction, a MatLAB-based Virtual Phantom for 2D EIT (MatVP2DEIT) is developed to generate accurate boundary data for assessing the 2D-EIT inverse solvers and the image reconstruction accuracy. MatVP2DEIT is a MatLAB-based computer program which simulates a phantom in computer and generates the boundary potential data as the outputs by using the combinations of different phantom parameters as the inputs to the program. Phantom diameter, inhomogeneity geometry (shape, size and position), number of inhomogeneities, applied current magnitude, background resistivity, inhomogeneity resistivity all are set as the phantom variables which are provided as the input parameters to the MatVP2DEIT for simulating different phantom configurations. A constant current injection is simulated at the phantom boundary with different current injection protocols and boundary potential data are calculated. Boundary data sets are generated with different phantom configurations obtained with the different combinations of the phantom variables and the resistivity images are reconstructed using EIDORS. Boundary data of the virtual phantoms, containing inhomogeneities with complex geometries, are also generated for different current injection patterns using MatVP2DEIT and the resistivity imaging is studied. The effect of regularization method on the image reconstruction is also studied with the data generated by MatVP2DEIT. Resistivity images are evaluated by studying the resistivity parameters and contrast parameters estimated from the elemental resistivity profiles of the reconstructed phantom domain. Results show that the MatVP2DEIT generates accurate boundary data for different types of single or multiple objects which are efficient and accurate enough to reconstruct the resistivity images in EIDORS. The spatial resolution studies show that, the resistivity imaging conducted with the boundary data generated by MatVP2DEIT with 2048 elements, can reconstruct two circular inhomogeneities placed with a minimum distance (boundary to boundary) of 2 mm. It is also observed that, in MatVP2DEIT with 2048 elements, the boundary data generated for a phantom with a circular inhomogeneity of a diameter less than 7% of that of the phantom domain can produce resistivity images in EIDORS with a 1968 element mesh. Results also show that the MatVP2DEIT accurately generates the boundary data for neighbouring, opposite reference and trigonometric current patterns which are very suitable for resistivity reconstruction studies. MatVP2DEIT generated data are also found suitable for studying the effect of the different regularization methods on reconstruction process. Comparing the reconstructed image with an original geometry made in MatVP2DEIT, it would be easier to study the resistivity imaging procedures as well as the inverse solver performance. Using the proposed MatVP2DEIT software with modified domains, the cross sectional anatomy of a number of body parts can be simulated in PC and the impedance image reconstruction of human anatomy can be studied.
Resumo:
The purpose of this article is to characterize dynamic optimal harvesting trajectories that maximize discounted utility assuming an age-structured population model, in the same line as Tahvonen (2009). The main novelty of our study is that uses as an age-structured population model the standard stochastic cohort framework applied in Virtual Population Analysis for fish stock assessment. This allows us to compare optimal harvesting in a discounted economic context with standard reference points used by fisheries agencies for long term management plans (e.g. Fmsy). Our main findings are the following. First, optimal steady state is characterized and sufficient conditions that guarantees its existence and uniqueness for the general case of n cohorts are shown. It is also proved that the optimal steady state coincides with the traditional target Fmsy when the utility function to be maximized is the yield and the discount rate is zero. Second, an algorithm to calculate the optimal path that easily drives the resource to the steady state is developed. And third, the algorithm is applied to the Northern Stock of hake. Results show that management plans based exclusively on traditional reference targets as Fmsy may drive fishery economic results far from the optimal.
Resumo:
For fully three decades there has been an almost steady decline in Maryland's oyster production... are alarmed for its future. Reasons for decline, data supplied,importance of brood oysters and clutch replenishment. Problems of warm weather and bacterial activity as well as tongs grinding the bottom. Conflicts in canning of early season oysters and late season crops like tomatoes. (PDF contains 16 pages)
Resumo:
[ES] El edificio tiene planta rectangular de unos 30 x 15 metros con un interior con una altura de 10 metros. Cuenta con una torre anexa a los pies y un pórtico de piedra de ocho arcos de posible factura medieval. La antigua cabecera ha quedado como la sacristía actual.