511 resultados para Vinca rosea
Resumo:
O objetivo deste trabalho foi desenvolver um oligonucleotídeo iniciador para reação em cadeia da polimerase (PCR) específico para as estirpes de Xylella fastidiosa que causam o mal de Pierce (PD) em videira (Vitis vinifera). Amplificações de DNA de 23 diferentes hospedeiros, usando o conjunto de oligonucleotídeos REP1-R (5'-IIIICGICGIATCCIGGC-3') e REP 2 (5'-ICGICTTATCI GGCCTAC-3') utilizando o programa: 94 ºC/2 min; 35 X (94 ºC/1 min, 45 ºC/1 min; 72 ºC/1 min and 30 s) 72 ºC/5 min, produziu um fragmento de 630 pb que diferenciou as estirpes de videiras dos demais. Entretanto, padrões de bandeamento REP não são considerados confiáveis para detecção devido ao par de oligonucleotídeos REP 1 e REP 2 corresponderem a seqüências repetitivas encontradas por todo o genoma bacteriano. Desse modo, o produto amplificado de 630 pb foi eluído do gel de agarose, purificado e seqüenciado. A informação da seqüência nucleotídica foi usada para identificar e sintetizar um oligonucleotídeo específico para o isolado de X. fastidiosa causadora do mal de Pierce denominado Xf-1 (5'-CGGGGGTGTAGGAGGGGTTGT-3'), que foi utilizado juntamente com o oligonucleotídeo REP-2 nas condições 94 ºC/2 min; 35 X (94 ºC/1 min, 62 ºC/1 min; 72 ºC/1 min and 30 s) 72 ºC/10 min. Os DNAs das estirpes de X. fastidiosa de outros hospedeiros [amêndoa (Prumus amygdalus), citros (Citrus spp.), café (Coffea arabica), olmo (Ulmus americana), amora (Morus rubra), carvalho (Quercus rubra), vinca (Catharantus roseus), ameixa (Prunus salicina) e ragweed (Ambrosia artemisiifolia)] e de bactérias Gram negativas e positivas foram submetidos a amplificação com o conjunto de oligonucleotídeos Xf-1/REP 2. Um fragmento, de aproximadamente 350 pb, foi amplificado apenas com o DNA de X. fastidiosa isolada de videira.
Resumo:
The biological control of the plants diseases, caused by fungi, is carried out using others organisms (predator, parasite or pathogen). Among the possible agents of biocontrol, a fungus has been highlighting as promising and it is known as Clonostachys rosea, asexual form of Bionectria ochroleuca. For that, it is necessary the in vitro production of spores of this fungus. In this study were tested several culture media to select those with better conidia production. The study was conducted at Plant Protection Division, in the Plant Production Department, FCA - UNESP, Botucatu campus, São Paulo state, Brazil. We used the isolated CCR64 (Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)-CNPMA). The means of crops were: BDA; Oats-Agar; Mazeina-Agar; Rice-Agar; V8-5%; V8-10%; V8-20%; TJ-5 %; TJ-10, TJ-20%. The sporulation of the fungus in different culture media was estimated at 8 days after of the incubation. The data were analyzed using method of comparing averages, using the Tukey test, at 5% probability, and the data processed, using (X + 1) 0.5 transformation. All culture media tested were able to produce conidia. It was found that the best culture media for production of conidia of Bionectria ochroleuca is the TJ-5%, followed by TJ-20%, with an sporulation average of 3,5 x 106 conidia / ml.
Resumo:
Currently, a wide range of research involving natural products is focused on the discovery of new drugs in many different therapeutic areas. A great number of the synthetic compounds on the market were derived from natural products, especially plants. Nemorosone is the major constituent of the floral resin of Clusia rosea Jacq., Clusiaceae, and in Cuban propolis. In vitro studies have shown cytotoxic activity in this substance against various tumor cell lines, including those resistant to various cytotoxic drugs, whereas it has low cytotoxicity to non-tumoral cells. Therefore, in order to characterize the biological activity of nemorosone, a substance with potential antitumor activity, and in view of preclinical testing of the toxicity of drug candidate compounds, the main aim of this study was to determine the mutagenic and antimutagenic activity of nemorosone by the Ames test, using the strains TA97a, TA98, TA100 and TA102 of Salmonella typhimurium. Secondly, to characterize the estrogenic activity in an experimental recombinant yeast model (Recombinant Yeast Assay) mutagenic activity was observed at in any of the concentrations in any of the test strains. To evaluate the antimutagenic potential, direct and indirect mutagenic agents were used: 4 nitro-o-phenylenediamine (NPD), mitomycin C (MMC) and aflatoxin B1 (AFL). Nemorosone showed moderate antimutagenic activity (inhibition level 31%), in strain TA100 in the presence of AFL, and strong antimutagenic activity in TA102 against MMC (inhibition level 53%). Estrogenic activity was observed, with an EEq of 0.41±0.16 nM at various tested concentrations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A review of recent literature shows that most taphonomic studies of Holocene and fossil macrovertebrates are not methodologically standardized. Hence, results from distinct studies are not comparable, even among researches sharing virtually identical goals, targeting the same biological group of similar age and depositional environment. The effects of the shell size in the taphonomic analysis are still poorly understood. In order to study this issue, the taphonomic signatures (articulation, valve type, fragmentation, abrasion, corrosion, edge modification, color alteration, bioerosion and encrustation) of brachiopod shells (Bouchardia rosea (Mawe)), from Ubatuba Bay in the northern coast of São Paulo State, were investigated according to the sieve sizes. In the study area, 14 collecting stations were sampled via Van Veen grab sampler, along a bathymetric gradient, ranging from 0 to 35 m of depth. Bulk samples were sieved through 8 mm, 6 mm, and 2 mm mesh sizes, yielding a total of 5.204 shells. The results indicate that, when taphonomic signatures were independently analyzed per size classes (8 mm, 6 mm, and 2 mm), the taphonomic signatures are recorded in a complex and random way. Additionally, cluster analysis showed that the similarity among the clusters vary according to the considered sieve size. Thus, the sieve size plays an important role in the distribution of taphonomic signatures in shells of distinct sizes. These results suggest that the concentration of the taphonomic analysis on one class (e.g., the largest sieve size, 8 mm) is not always the best method. Rather, the total data (all sieves included) seems more accurate in recording the whole spectrum of taphonomic processes recorded in shells of a given assemblage.
Resumo:
The occurrence of brachiopods in Cenozoic rocks of the Pelotas Basin is known since 1862. In spite of that, detailed systematic and taphonomic studies are still missing. Investigations made a half century ago, have suggested that these brachiopods could belong to Bouchardia cf. zitteli, a species found in the San Julian Formation, Late Oligocene, Argentina. Our data suggest that those brachiopods may resemble Bouchardia transplatina. In the Uruguayan portion of the Pelotas Basin B. transplatina is known in rocks of the Camacho Formation, Miocene. In addition, small recrystallized shells of brachiopods were also recovered from three Petrobras boreholes (2PJ-1-RS, 2PN-1-RS, and 2GA-1-RS) from the Pelotas Basin. Brachiopods come from the interval of 130 to 150 meters within the Miocene Henryhowella evax Zone. Despite the degree of taphonomic modiication of those brachiopod shells they indubitably belong to Bouchardia sp. This is noteworthy for various reasons: 1- Bouchardia is a brachiopod with warm water afinities. Presently, extant members of this genus are unknown in latitudes up to 34[degree]S, with the main records at 23[degree]S. 2- Although occurring in depths down to 200 meters, the living member (Bouchardia rosea) of this genus is most abundant in shallow platformal, nutrient-rich waters. 3- The occurrence of Bouchardia in the Miocene of the Pelotas Basin indicates that, at least to the interval of Henryhowella evax Zone, warm waters of the Brazilian currents prevail. This interpretation is in strong accordance with other paleoeoceanographic and paleoclimatic data offered by various groups of co-occurring microfossils, such as ostracodes and foraminifers.
Resumo:
Until recently, the rhynchonelliform (articulated) brachiopod fauna from the Brazilian continental shelf (western South Atlantic) was represented only by the endemic species Bouchardia rosea (Mawe), reported from coastal waters of the states of São Paulo and Rio de Janeiro. The present study, based on samples from coastal (<30 m), shelf, and continental slope waters (99-485 m), documents the South Atlantic brachiopod fauna and shows that this fauna is more widespread, diverse, and cosmopolitan than previously thought. Based on a total of 16,177 specimens, the following brachiopods have been identified: Bouchardia rosea (Family Bouchardiidae), Platidia anomioides (Family Platidiidae), Argyrotheca cf. cuneata (Family Megathyrididae), and Terebratulina sp. (Family Cancellothyrididae). In coastal settings, the fauna is overwhelmingly dominated by Bouchardia rosea. Rare juvenile (<2 mm) specimens of Argyrotheca cf. cuneata were also found at two shallow-water sites. In shelf settings (100-200 m), the fauna is more diverse and includes Bouchardia rosea, Terebratulina sp., Argyrotheca cf. cuneata, and Platidia anomioides. Notably, Bouchardia rosea was found in waters as deep as 485 m, extending the known bathymetric range of this genus. Also, the record of this brachiopod in waters of the state of Parana is the southernmost known occurrence of this species. The genera Platidia and Terebratulina are documented here for the first time for the western South Atlantic. The Brazilian brachiopod fauna shares similarities with those from the Atlantic and Indian shelves of southern Africa, and from the Antarctic, Caribbean and Mediterranean waters. The present-day brachiopods of the western South Atlantic are much more cosmopolitan than previously thought and their Cenozoic palaeobiogeographic history has to be reconsidered from that perspective.
Resumo:
The extent of racemization of aspartic acid (Asp) has been used to estimate the ages of 9 shells of the epifaunal calcitic brachiopod Bouchardia rosea and 9 shells of the infaunal aragonitic bivalve Semele casali. Both taxa were collected concurrently from the same sites at depths of 10 m and 30 m off the coast of Brazil. Asp D/L values show an excellent correlation with radiocarbon age at both sites and for both taxa (r(Site)(2) (9) (B. rosea) = 0.97 r(Site)(2) (1) (B.) (rosea) = 0.997, r(Site)(2) (9) (S.) (casali) = 0.9998, r(2) (Site) (1) (S.casali) = 0.93). The Asp ratios plotted against reservoir-corrected AMS radiocarbon ages over the time span of multiple millennia can thus be used to develop reliable and precise geochronologies not only for aragonitic mollusks (widely used for dating previously), but also for calcitic brachiopods. At each collection site, Bouchardia specimens display consistently higher D/L values than specimens of Semele. Thermal differences between sites are also notable and in agreement with theoretical expectations, as extents of racemization for both taxa are greater at the warmer, shallower site than at the cooler, deeper one. In late Holocene marine settings, concurrent time series of aragonitic and calcitic shells can be assembled using Asp racemization dating, and parallel multi-centennial to multi-millennial records can be developed simultaneously for multiple biomineral systems. (c) 2006 University of Washington. All rights reserved.
Resumo:
Quantitative estimates of time-averaging in marine shell accumulations available to date are limited primarily to aragonitic mollusk shells. We assessed time-averaging in Holocene assemblages of calcitic brachiopod shells by direct dating of individual specimens of the terebratulid brachiopod Bouchardia rosea. The data were collected from exceptional (brachiopod-rich) shell assemblages, occurring surficially on a tropical mixed carbonate-siliciclastic shelf (the Southeast Brazilian Bight, SW Atlantic), a setting that provides a good climatic and environmental analog for many Paleozoic brachiopod shell beds of North America and Europe. A total of 82 individual brachiopod shells, collected from four shallow (5-25 m) nearshore (<2.5 km from the shore) localities, were dated by using amino acid racemization (D-alloisoleucine/L-isoleucine value) calibrated with five AMS-radiocarbon dates (r(2) = 0.933). This is the first study to demonstrate that amino acid racemization methods can provide accurate and precise ages for individual shells of calcitic brachiopods.The dated shells vary in age from modern to 3000 years, with a standard deviation of 690 years. The age distribution is strongly right-skewed: the young shells dominate the dated specimens and older shells are increasingly less common. However, the four localities display significant differences in the range of time-averaging and the form of the age distribution. The dated shells vary notably in the quality of preservation, but there is no significant correlation between taphonomic condition and age, either for individual shells or at assemblage level.These results demonstrate that fossil brachiopods may show considerable time-averaging, but the scale and nature of that mixing may vary greatly among sites. Moreover, taphonomic condition is not a reliable indicator of pre-burial history of individual brachiopod shells or the scale of temporal mixing within the entire assemblage. The results obtained for brachiopods are strikingly similar to results previously documented for mollusks and suggest that differences in mineralogy and shell microstructure are unlikely to be the primary factors controlling the nature and scale of time-averaging. Environmental factors and local fluctuations in populations of shell-producing organisms are more likely to be the principal determinants of time-averaging in marine benthic shelly assemblages. The long-term survival of brachiopod shells is incongruent with the rapid shell destruction observed in taphonomic experiments. The results support the taphonomic model that shells remain protected below (but perhaps near) the surface through their early taphonomic history. They may be brought back up to the surface intermittently by bioturbation and physical reworking, but only for short periods of time. This model explains the striking similarities in time-averaging among different types of organisms and the lack of correlation between time-since-death and shell taphonomy.
Resumo:
Over 14,000 specimens-5,204 brachiopods, 9,137 bivalves, and 178 gastropods-acquired from 30 collecting stations (0 to 45 m depth) in the Ubatuba and Picinguaba bays, southern Brazil, were compared for drilling frequencies. Beveled (countersunk) circular-to-subcircular borings (Oichnus-like drill holes) were found in diverse bivalves but also in the rhynchonelliform brachiopod Bouchardia rosea-a small, semi-infaunal to epifaunal, free-lying species that dominates the brachiopod fauna of the southern Brazilian shelf. Drill holes in bivalve mollusks and brachiopods are comparable in their morphology, average diameter, and diameter range, indicating attacks by a single type of drilling organism. Drill holes in brachiopods were rare (0.4%) and found only at five sampling sites. Drillings in bivalves were over 10 times as frequent as in brachiopods, but the average drilling frequency was still low (5.6%) compared to typical boring frequencies of Cenozoic mollusks. Some common bivalve species, however, were drilled at frequencies up to 50 times higher than those observed for shells of B. rosea from the same samples. Due to scarcity of drilled brachiopods, it is not possible to evaluate if the driller displayed a nonrandom (stereotyped) site, size, or valve preference. Drilled brachiopods may record (1) naticid or muricid predation, (2) predation by other drillers, (3) parasitic drillings, and (4) mistaken or opportunistic attacks. Low drilling frequency in brachiopods is consistent with recent reports on ancient and modern examples. The scarcity of drilling in brachiopods, coupled with much higher drilling frequencies observed in sympatric bivalves, suggests that drilling in brachiopods may have been due to facultative or erroneous attacks. The drilling frequencies observed here for the brachiopod-bivalve assemblages are remarkably similar to those reported for Permian brachiopod-bivalves associations. This report adds to the growing evidence for an intriguing macroecological stasis: multiple meta-analytical surveys of present-day and fossil rhynchonelliform brachiopods conducted in recent years also point to persistent scarcity and low intensity of biotic interactions between brachiopods and drilling organisms throughout their evolutionary history.
Resumo:
Plants have been used in the cure of diseases from the origins of the humanity. At present, in Brazil, the use is common because of the difficulty of access of part of the population to medical assistance. It is commonly believed that the medicinal plants of traditional use were already tested and ratified by the long-lasting use by the human species, being considered effective medicines, presenting no collateral effects, not needful, therefore, of evaluation. The miraculous self-medication with medicinal plants goes to the point of substituting therapies in serious diseases such as those of hypoglycemic or anti-diabetic effect. For the test of medicinal plants, it is necessary to consider the material quality to be tested, the plant component used, extraction method, dosage, and the experimental species used. Several plants have already had hypoglycemic effects proven experimentally. The objective of this paper was to accomplish a revision of Brazilian medicinal plants, used popularly, as hypoglycemics that had effects proven in animals and in humans.
Resumo:
The effects of time averaging on the fossil record of soft-substrate marine faunas have been investigated in great detail, but the temporal resolution of epibiont assemblages has been inferred only from limited-duration deployment experiments. Individually dated shells provide insight into the temporal resolution of epibiont assemblages and the taphonomic history of their hosts over decades to centuries. Epibiont abundance and richness were evaluated for 86 dated valves of the rhynchonelliform brachiopod Bouchardia rosea collected from the inner shelf. Maximum abundance occurred on shells less than 400 yr old, and maximum diversity was attained within a century. Taphonomic evidence does not support models of live-host colonization, net accumulation, or erasure of epibionts over time. Encrustation appears to have occurred during a brief interval between host death and burial, with no evidence of significant recolonization of exhumed shells. Epibiont assemblages of individually dated shells preserve ecological snapshots, despite host-shell time averaging, and may record long-term ecological changes or anthropogenic environmental changes. Unless the ages of individual shells are directly estimated, however, pooling shells of different ages artificially reduces the temporal resolution of their encrusting assemblages to that of their hosts, an artifact of analytical time averaging. © 2006 by The University of Chicago. All rights reserved.
Resumo:
Shells of Bouchardia rosea (Brachiopoda, Rhynchonelliformea) are abundant in Late Holocene death assemblages of the Ubatuba Bight, Brazil, SW Atlantic. This genus is also known from multiple localities in the Cenozoic fossil record of South America. A total of 1211 valves of B. rosea, 2086 shells of sympatric bivalve mollusks (14 nearshore localities ranging in depth from 0 to 30 m), 80 shells of Bouchardia zitteli, San Julián Formation, Paleogene, Argentina, and 135 shells of Bouchardia transplatina, Camacho Formation, Neogene, Uruguay were examined for bioerosion traces. All examined bouchardiid shells represent shallow-water, subtropical marine settings. Out of 1211 brachiopod shells of B. rosea, 1201 represent dead individuals. A total of 149 dead specimens displayed polychaete traces (Caulostrepsis). Live polychaetes were found inside Caulostrepsis borings in 10 life-collected brachiopods, indicating a syn-vivo interaction (Caulostrepsis traces in dead shells of B. rosea were always empty). The long and coiled peristomial palps, large chaetae on both sides of the 5th segment, and flanged pygidium found in the polychaetes are characteristic of the polychaete genus Polydora (Spionidae). The fact that 100% of the Caulostrepsis found in living brachiopods were still inhabited by the trace-making spionids, whereas none was found in dead hosts, implies active biotic interaction between the two living organisms rather than colonization of dead brachiopod shells. The absence of blisters, the lack of valve/site stereotypy, and the fact that tubes open only externally are all suggestive of a commensal relationship. These data document a new host group (bouchardiid rhynchonelliform brachiopods) with which spionids can interact (interestingly, spionid-infested sympatric bivalves have not been found in the study area despite extensive sampling). The syn-vivo interaction indicates that substantial bioerosion may occur when the host is alive. Thus, the presence of such bioerosion traces on fossil shells need not imply a prolonged post-mortem exposure of shells on the sea floor. Also, none of the Paleogene and Neogene Bouchardia species included any ichnological evidence for spionid infestation. This indicates that the Spionidae/ Bouchardia association may be geologically young, although the lack of older records may also reflect limited sampling and/or taphonomic biases.
Resumo:
Background: Brown propolis is the major type of propolis found in Cuba; its principal component is nemorosone, the major constituent of Clusia rosea floral resins. Nemorosone has received increasing attention due to its strong in vitro anti-cancer action. The citotoxicity of nemorosone in several human cancer cell lines has been reported and correlated to the direct action it has on the estrogen receptor (ER). Breast cancer can be treated with agents that target estrogen-mediated signaling, such as antiestrogens. Phytoestrogen can mimic or modulate the actions of endogenous estrogens and the treatment of breast cancer with phytoestrogens may be a valid strategy, since they have shown anti-cancer activity.Methods: The aim of the present investigation was to assess the capacity of nemorosone to interact with ERs, by Recombinant Yeast Assay (RYA) and E-screen assays, and to determine by comet assay, if the compound causes DNA-damaging in tumoral and non-tumoral breast cells.Results: Nemorosone did not present estrogenic activity, however, it inhibited the 17-β-estradiol (E2) action when either of both methods was used, showing their antiestrogenicity. The DNA damage induced by the benzophenone in cancer and normal breast cells presented negative results.Conclusion: These findings suggest that nemorosone may have therapeutic application in the treatment of breast cancer. © 2013 Camargo et al.; licensee BioMed Central Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)