964 resultados para Video Surveillance


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The time consuming and labour intensive task of identifying individuals in surveillance video is often challenged by poor resolution and the sheer volume of stored video. Faces or identifying marks such as tattoos are often too coarse for direct matching by machine or human vision. Object tracking and super-resolution can then be combined to facilitate the automated detection and enhancement of areas of interest. The object tracking process enables the automatic detection of people of interest, greatly reducing the amount of data for super-resolution. Smaller regions such as faces can also be tracked. A number of instances of such regions can then be utilized to obtain a super-resolved version for matching. Performance improvement from super-resolution is demonstrated using a face verification task. It is shown that there is a consistent improvement of approximately 7% in verification accuracy, using both Eigenface and Elastic Bunch Graph Matching approaches for automatic face verification, starting from faces with an eye to eye distance of 14 pixels. Visual improvement in image fidelity from super-resolved images over low-resolution and interpolated images is demonstrated on a small database. Current research and future directions in this area are also summarized.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This chapter describes an experimental system for the recognition of human faces from surveillance video. In surveillance applications, the system must be robust to changes in illumination, scale, pose and expression. The system must also be able to perform detection and recognition rapidly in real time. Our system detects faces using the Viola-Jones face detector, then extracts local features to build a shape-based feature vector. The feature vector is constructed from ratios of lengths and differences in tangents of angles, so as to be robust to changes in scale and rotations in-plane and out-of-plane. Consideration was given to improving the performance and accuracy of both the detection and recognition steps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current state of the art and direction of research in computer vision aimed at automating the analysis of CCTV images is presented. This includes low level identification of objects within the field of view of cameras, following those objects over time and between cameras, and the interpretation of those objects’ appearance and movements with respect to models of behaviour (and therefore intentions inferred). The potential ethical problems (and some potential opportunities) such developments may pose if and when deployed in the real world are presented, and suggestions made as to the necessary new regulations which will be needed if such systems are not to further enhance the power of the surveillers against the surveilled.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Today, most conventional surveillance networks are based on analog system, which has a lot of constraints like manpower and high-bandwidth requirements. It becomes the barrier for today's surveillance network development. This dissertation describes a digital surveillance network architecture based on the H.264 coding/decoding (CODEC) System-on-a-Chip (SoC) platform. The proposed digital surveillance network architecture includes three major layers: software layer, hardware layer, and the network layer. The following outlines the contributions to the proposed digital surveillance network architecture. (1) We implement an object recognition system and an object categorization system on the software layer by applying several Digital Image Processing (DIP) algorithms. (2) For better compression ratio and higher video quality transfer, we implement two new modules on the hardware layer of the H.264 CODEC core, i.e., the background elimination module and the Directional Discrete Cosine Transform (DDCT) module. (3) Furthermore, we introduce a Digital Signal Processor (DSP) sub-system on the main bus of H.264 SoC platforms as the major hardware support system for our software architecture. Thus we combine the software and hardware platforms to be an intelligent surveillance node. Lab results show that the proposed surveillance node can dramatically save the network resources like bandwidth and storage capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surveillance systems such as object tracking and abandoned object detection systems typically rely on a single modality of colour video for their input. These systems work well in controlled conditions but often fail when low lighting, shadowing, smoke, dust or unstable backgrounds are present, or when the objects of interest are a similar colour to the background. Thermal images are not affected by lighting changes or shadowing, and are not overtly affected by smoke, dust or unstable backgrounds. However, thermal images lack colour information which makes distinguishing between different people or objects of interest within the same scene difficult. ----- By using modalities from both the visible and thermal infrared spectra, we are able to obtain more information from a scene and overcome the problems associated with using either modality individually. We evaluate four approaches for fusing visual and thermal images for use in a person tracking system (two early fusion methods, one mid fusion and one late fusion method), in order to determine the most appropriate method for fusing multiple modalities. We also evaluate two of these approaches for use in abandoned object detection, and propose an abandoned object detection routine that utilises multiple modalities. To aid in the tracking and fusion of the modalities we propose a modified condensation filter that can dynamically change the particle count and features used according to the needs of the system. ----- We compare tracking and abandoned object detection performance for the proposed fusion schemes and the visual and thermal domains on their own. Testing is conducted using the OTCBVS database to evaluate object tracking, and data captured in-house to evaluate the abandoned object detection. Our results show that significant improvement can be achieved, and that a middle fusion scheme is most effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CCTV and surveillance networks are increasingly being used for operational as well as security tasks. One emerging area of technology that lends itself to operational analytics is soft biometrics. Soft biometrics can be used to describe a person and detect them throughout a sparse multi-camera network. This enables them to be used to perform tasks such as determining the time taken to get from point to point, and the paths taken through an environment by detecting and matching people across disjoint views. However, in a busy environment where there are 100's if not 1000's of people such as an airport, attempting to monitor everyone is highly unrealistic. In this paper we propose an average soft biometric, that can be used to identity people who look distinct, and are thus suitable for monitoring through a large, sparse camera network. We demonstrate how an average soft biometric can be used to identify unique people to calculate operational measures such as the time taken to travel from point to point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From a law enforcement standpoint, the ability to search for a person matching a semantic description (i.e. 1.8m tall, red shirt, jeans) is highly desirable. While a significant research effort has focused on person re-detection (the task of identifying a previously observed individual in surveillance video), these techniques require descriptors to be built from existing image or video observations. As such, person re-detection techniques are not suited to situations where footage of the person of interest is not readily available, such as a witness reporting a recent crime. In this paper, we present a novel framework that is able to search for a person based on a semantic description. The proposed approach uses size and colour cues, and does not require a person detection routine to locate people in the scene, improving utility in crowded conditions. The proposed approach is demonstrated with a new database that will be made available to the research community, and we show that the proposed technique is able to correctly localise a person in a video based on a simple semantic description.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose an approach which attempts to solve the problem of surveillance event detection, assuming that we know the definition of the events. To facilitate the discussion, we first define two concepts. The event of interest refers to the event that the user requests the system to detect; and the background activities are any other events in the video corpus. This is an unsolved problem due to many factors as listed below: 1) Occlusions and clustering: The surveillance scenes which are of significant interest at locations such as airports, railway stations, shopping centers are often crowded, where occlusions and clustering of people are frequently encountered. This significantly affects the feature extraction step, and for instance, trajectories generated by object tracking algorithms are usually not robust under such a situation. 2) The requirement for real time detection: The system should process the video fast enough in both of the feature extraction and the detection step to facilitate real time operation. 3) Massive size of the training data set: Suppose there is an event that lasts for 1 minute in a video with a frame rate of 25fps, the number of frames for this events is 60X25 = 1500. If we want to have a training data set with many positive instances of the event, the video is likely to be very large in size (i.e. hundreds of thousands of frames or more). How to handle such a large data set is a problem frequently encountered in this application. 4) Difficulty in separating the event of interest from background activities: The events of interest often co-exist with a set of background activities. Temporal groundtruth typically very ambiguous, as it does not distinguish the event of interest from a wide range of co-existing background activities. However, it is not practical to annotate the locations of the events in large amounts of video data. This problem becomes more serious in the detection of multi-agent interactions, since the location of these events can often not be constrained to within a bounding box. 5) Challenges in determining the temporal boundaries of the events: An event can occur at any arbitrary time with an arbitrary duration. The temporal segmentation of events is difficult and ambiguous, and also affected by other factors such as occlusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The location of previously unseen and unregistered individuals in complex camera networks from semantic descriptions is a time consuming and often inaccurate process carried out by human operators, or security staff on the ground. To promote the development and evaluation of automated semantic description based localisation systems, we present a new, publicly available, unconstrained 110 sequence database, collected from 6 stationary cameras. Each sequence contains detailed semantic information for a single search subject who appears in the clip (gender, age, height, build, hair and skin colour, clothing type, texture and colour), and between 21 and 290 frames for each clip are annotated with the target subject location (over 11,000 frames are annotated in total). A novel approach for localising a person given a semantic query is also proposed and demonstrated on this database. The proposed approach incorporates clothing colour and type (for clothing worn below the waist), as well as height and build to detect people. A method to assess the quality of candidate regions, as well as a symmetry driven approach to aid in modelling clothing on the lower half of the body, is proposed within this approach. An evaluation on the proposed dataset shows that a relative improvement in localisation accuracy of up to 21 is achieved over the baseline technique.