944 resultados para Very long path length
Resumo:
Information reconciliation is a crucial procedure in the classical post-processing of quantum key distribution (QKD). Poor reconciliation e?ciency, revealing more information than strictly needed, may compromise the maximum attainable distance, while poor performance of the algorithm limits the practical throughput in a QKD device. Historically, reconciliation has been mainly done using close to minimal information disclosure but heavily interactive procedures, like Cascade, or using less e?cient but also less interactive ?just one message is exchanged? procedures, like the ones based in low-density parity-check (LDPC) codes. The price to pay in the LDPC case is that good e?ciency is only attained for very long codes and in a very narrow range centered around the quantum bit error rate (QBER) that the code was designed to reconcile, thus forcing to have several codes if a broad range of QBER needs to be catered for. Real world implementations of these methods are thus very demanding, either on computational or communication resources or both, to the extent that the last generation of GHz clocked QKD systems are ?nding a bottleneck in the classical part. In order to produce compact, high performance and reliable QKD systems it would be highly desirable to remove these problems. Here we analyse the use of short-length LDPC codes in the information reconciliation context using a low interactivity, blind, protocol that avoids an a priori error rate estimation. We demonstrate that 2×103 bits length LDPC codes are suitable for blind reconciliation. Such codes are of high interest in practice, since they can be used for hardware implementations with very high throughput.
Resumo:
RESUMEN: La realización de túneles de gran longitud para ferrocarriles ha adquirido un gran auge en los últimos años. En España se han abordado proyectos de estas características, no existiendo para su ejecución una metodología completa y contrastada de actuación. Las características geométricas, de observación y de trabajo en túneles hace que las metodologías que se aplican en otros proyectos de ingeniería no sean aplicables por las siguientes causas: separación de las redes exteriores e interiores de los túneles debido a la diferente naturaleza de los observables, geometría en el interior siempre desfavorable a los requerimientos de observación clásica, mala visibilidad dentro del túnel, aumento de errores conforme avanza la perforación, y movimientos propios del túnel durante su ejecución por la propia geodinámica activa. Los patrones de observación geodésica usados deben revisarse cuando se ejecutan túneles de gran longitud. Este trabajo establece una metodología para el diseño de redes exteriores. ABSTRACT: The realization of long railway tunnels has acquired a great interest in recent years. In Spain it is necessary to address projects of this nature, but ther is no corresponding methodological framework supporting them. The tunnel observational and working geometrical properties, make that former methodologies used may be unuseful in this case: the observation of the exterior and interior geodetical networks of the tunnel is different in nature. Conditions of visibility in the interior of the tunnels, regardless of the geometry, are not the most advantageous for observation due to the production system and the natural conditions of the tunnels. Errors increase as the drilling of the tunnel progresses, as it becomes problematical to perform continuous verifications along the itinerary itself. Moreover, inherent tunnel movements due to active geodynamics must also be considered. Therefore patterns for geodetic and topographic observations have to be reviewed when very long tunnels are constructed.
Resumo:
RESUMEN La realización de túneles de gran longitud para ferrocarriles ha adquirido un gran auge en los últimos años. En España se han abordado proyectos de estas características, no existiendo para su ejecución una metodología completa y contrastada de actuación. Las características geométricas, de observación y de trabajo en túneles hace que las metodologías que se aplican en otros proyectos de ingeniería no sean aplicables por las siguientes causas: separación de las redes exteriores e interiores de los túneles debido a la diferente naturaleza de los observables, geometría en el interior siempre desfavorable a los requerimientos de observación clásica, mala visibilidad dentro del túnel, aumento de errores conforme avanza la perforación, y movimientos propios del túnel durante su ejecución por la propia geodinámica activa. Los patrones de observación geodésica usados deben revisarse cuando se ejecutan túneles de gran longitud. Este trabajo establece una metodología para el diseño de redes exteriores. ABSTRACT: The realization of long railway tunnels has acquired a great interest in recent years. In Spain it is necessary to address projects of this nature, but ther is no corresponding methodological framework supporting them. The tunnel observational and working geometrical properties, make that former methodologies used may be unuseful in this case: the observation of the exterior and interior geodetical networks of the tunnel is different in nature. Conditions of visibility in the interior of the tunnels, regardless of the geometry, are not the most advantageous for observation due to the production system and the natural conditions of the tunnels. Errors increase as the drilling of the tunnel progresses, as it becomes problematical to perform continuous verifications along the itinerary itself. Moreover, inherent tunnel movements due to active geodynamics must also be considered. Therefore patterns for geodetic and topographic observations have to be reviewed when very long tunnels are constructed.
Resumo:
Arch bridge structural solution has been known for centuries, in fact the simple nature of arch that require low tension and shear strength was an advantage as the simple materials like stone and brick were the only option back in ancient centuries. By the pass of time especially after industrial revolution, the new materials were adopted in construction of arch bridges to reach longer spans. Nowadays one long span arch bridge is made of steel, concrete or combination of these two as "CFST", as the result of using these high strength materials, very long spans can be achieved. The current record for longest arch belongs to Chaotianmen bridge over Yangtze river in China with 552 meters span made of steel and the longest reinforced concrete type is Wanxian bridge which also cross the Yangtze river through a 420 meters span. Today the designer is no longer limited by span length as long as arch bridge is the most applicable solution among other approaches, i.e. cable stayed and suspended bridges are more reasonable if very long span is desired. Like any super structure, the economical and architectural aspects in construction of a bridge is extremely important, in other words, as a narrower bridge has better appearance, it also require smaller volume of material which make the design more economical. Design of such bridge, beside the high strength materials, requires precise structural analysis approaches capable of integrating the combination of material behaviour and complex geometry of structure and various types of loads which may be applied to bridge during its service life. Depend on the design strategy, analysis may only evaluates the linear elastic behaviour of structure or consider the nonlinear properties as well. Although most of structures in the past were designed to act in their elastic range, the rapid increase in computational capacity allow us to consider different sources of nonlinearities in order to achieve a more realistic evaluations where the dynamic behaviour of bridge is important especially in seismic zones where large movements may occur or structure experience P - _ effect during the earthquake. The above mentioned type of analysis is computationally expensive and very time consuming. In recent years, several methods were proposed in order to resolve this problem. Discussion of recent developments on these methods and their application on long span concrete arch bridges is the main goal of this research. Accordingly available long span concrete arch bridges have been studied to gather the critical information about their geometrical aspects and properties of their materials. Based on concluded information, several concrete arch bridges were designed for further studies. The main span of these bridges range from 100 to 400 meters. The Structural analysis methods implemented in in this study are as following: Elastic Analysis: Direct Response History Analysis (DRHA): This method solves the direct equation of motion over time history of applied acceleration or imposed load in linear elastic range. Modal Response History Analysis (MRHA): Similar to DRHA, this method is also based on time history, but the equation of motion is simplified to single degree of freedom system and calculates the response of each mode independently. Performing this analysis require less time than DRHA. Modal Response Spectrum Analysis (MRSA): As it is obvious from its name, this method calculates the peak response of structure for each mode and combine them using modal combination rules based on the introduced spectra of ground motion. This method is expected to be fastest among Elastic analysis. Inelastic Analysis: Nonlinear Response History Analysis (NL-RHA): The most accurate strategy to address significant nonlinearities in structural dynamics is undoubtedly the nonlinear response history analysis which is similar to DRHA but extended to inelastic range by updating the stiffness matrix for every iteration. This onerous task, clearly increase the computational cost especially for unsymmetrical buildings that requires to be analyzed in a full 3D model for taking the torsional effects in to consideration. Modal Pushover Analysis (MPA): The Modal Pushover Analysis is basically the MRHA but extended to inelastic stage. After all, the MRHA cannot solve the system of dynamics because the resisting force fs(u; u_ ) is unknown for inelastic stage. The solution of MPA for this obstacle is using the previously recorded fs to evaluate system of dynamics. Extended Modal Pushover Analysis (EMPA): Expanded Modal pushover is a one of very recent proposed methods which evaluates response of structure under multi-directional excitation using the modal pushover analysis strategy. In one specific mode,the original pushover neglect the contribution of the directions different than characteristic one, this is reasonable in regular symmetric building but a structure with complex shape like long span arch bridges may go through strong modal coupling. This method intend to consider modal coupling while it take same time of computation as MPA. Coupled Nonlinear Static Pushover Analysis (CNSP): The EMPA includes the contribution of non-characteristic direction to the formal MPA procedure. However the static pushovers in EMPA are performed individually for every mode, accordingly the resulted values from different modes can be combined but this is only valid in elastic phase; as soon as any element in structure starts yielding the neutral axis of that section is no longer fixed for both response during the earthquake, meaning the longitudinal deflection unavoidably affect the transverse one or vice versa. To overcome this drawback, the CNSP suggests executing pushover analysis for governing modes of each direction at the same time. This strategy is estimated to be more accurate than MPA and EMPA, moreover the calculation time is reduced because only one pushover analysis is required. Regardless of the strategy, the accuracy of structural analysis is highly dependent on modelling and numerical integration approaches used in evaluation of each method. Therefore the widely used Finite Element Method is implemented in process of all analysis performed in this research. In order to address the study, chapter 2, starts with gathered information about constructed long span arch bridges, this chapter continuous with geometrical and material definition of new models. Chapter 3 provides the detailed information about structural analysis strategies; furthermore the step by step description of procedure of all methods is available in Appendix A. The document ends with the description of results and conclusion of chapter 4.
Resumo:
In this paper, a model of the measuring process of sonic anemometers with more than one measuring path is presented. The main hypothesis of the work is that the time variation of the turbulent speed field during the sequence of pulses that produces a measure of the wind speed vector affects the measurement. Therefore, the previously considered frozen flow, or instantaneous averaging, condition is relaxed. This time variation, quantified by the mean Mach number of the flow and the time delay between consecutive pulses firings, in combination with both the full geometry of sensors (acoustic path location and orientation) and the incidence angles of the mean with speed vector, give rise to significant errors in the measurement of turbulence which are not considered by models based on the hypothesis of instantaneous line averaging. The additional corrections (relative to the ones proposed by instantaneous line-averaging models) are strongly dependent on the wave number component parallel to the mean wind speed, the time delay between consecutive pulses, the Mach number of the flow, the geometry of the sensor and the incidence angles of mean wind speed vector. Kaimal´s limit k W1=1/l (where k W1 is the wave number component parallel to mean wind speed and l is the path length) for the maximum wave numbers from which the sonic process affects the measurement of turbulence is here generalized as k W1=C l /l, where C l is usually lesser than unity and depends on all the new parameters taken into account by the present model.
Resumo:
La región cerca de la pared de flujos turbulentos de pared ya está bien conocido debido a su bajo número de Reynolds local y la separación escala estrecha. La región lejos de la pared (capa externa) no es tan interesante tampoco, ya que las estadísticas allí se escalan bien por las unidades exteriores. La región intermedia (capa logarítmica), sin embargo, ha estado recibiendo cada vez más atención debido a su propiedad auto-similares. Además, de acuerdo a Flores et al. (2007) y Flores & Jiménez (2010), la capa logarítmica es más o menos independiente de otras capas, lo que implica que podría ser inspeccionado mediante el aislamiento de otras dos capas, lo que reduciría significativamente los costes computacionales para la simulación de flujos turbulentos de pared. Algunos intentos se trataron después por Mizuno & Jiménez (2013), quien simulan la capa logarítmica sin la región cerca de la pared con estadísticas obtenidas de acuerdo razonablemente bien con los de las simulaciones completas. Lo que más, la capa logarítmica podría ser imitado por otra turbulencia sencillo de cizallamiento de motor. Por ejemplo, Pumir (1996) encontró que la turbulencia de cizallamiento homogéneo estadísticamente estacionario (SS-HST) también irrumpe, de una manera muy similar al proceso de auto-sostenible en flujos turbulentos de pared. Según los consideraciones arriba, esta tesis trata de desvelar en qué medida es la capa logarítmica de canales similares a la turbulencia de cizalla más sencillo, SS-HST, mediante la comparación de ambos cinemática y la dinámica de las estructuras coherentes en los dos flujos. Resultados sobre el canal se muestran mediante Lozano-Durán et al. (2012) y Lozano-Durán & Jiménez (2014b). La hoja de ruta de esta tarea se divide en tres etapas. En primer lugar, SS-HST es investigada por medio de un código nuevo de simulación numérica directa, espectral en las dos direcciones horizontales y compacto-diferencias finitas en la dirección de la cizalla. Sin utiliza remallado para imponer la condición de borde cortante periódica. La influencia de la geometría de la caja computacional se explora. Ya que el HST no tiene ninguna longitud característica externa y tiende a llenar el dominio computacional, las simulaciopnes a largo plazo del HST son ’mínimos’ en el sentido de que contiene sólo unas pocas estructuras media a gran escala. Se ha encontrado que el límite principal es el ancho de la caja de la envergadura, Lz, que establece las escalas de longitud y velocidad de la turbulencia, y que las otras dos dimensiones de la caja debe ser suficientemente grande (Lx > 2LZ, Ly > Lz) para evitar que otras direcciones estando limitado también. También se encontró que las cajas de gran longitud, Lx > 2Ly, par con el paso del tiempo la condición de borde cortante periódica, y desarrollar fuertes ráfagas linealizadas no físicos. Dentro de estos límites, el flujo muestra similitudes y diferencias interesantes con otros flujos de cizalla, y, en particular, con la capa logarítmica de flujos turbulentos de pared. Ellos son exploradas con cierto detalle. Incluyen un proceso autosostenido de rayas a gran escala y con una explosión cuasi-periódica. La escala de tiempo de ruptura es de aproximadamente universales, ~20S~l(S es la velocidad de cizallamiento media), y la disponibilidad de dos sistemas de ruptura diferentes permite el crecimiento de las ráfagas a estar relacionado con algo de confianza a la cizalladura de turbulencia inicialmente isotrópico. Se concluye que la SS-HST, llevado a cabo dentro de los parámetros de cílculo apropiados, es un sistema muy prometedor para estudiar la turbulencia de cizallamiento en general. En segundo lugar, las mismas estructuras coherentes como en los canales estudiados por Lozano-Durán et al. (2012), es decir, grupos de vórticidad (fuerte disipación) y Qs (fuerte tensión de Reynolds tangencial, -uv) tridimensionales, se estudia mediante simulación numérica directa de SS-HST con relaciones de aspecto de cuadro aceptables y número de Reynolds hasta Rex ~ 250 (basado en Taylor-microescala). Se discute la influencia de la intermitencia de umbral independiente del tiempo. Estas estructuras tienen alargamientos similares en la dirección sentido de la corriente a las familias separadas en los canales hasta que son de tamaño comparable a la caja. Sus dimensiones fractales, longitudes interior y exterior como una función del volumen concuerdan bien con sus homólogos de canales. El estudio sobre sus organizaciones espaciales encontró que Qs del mismo tipo están alineados aproximadamente en la dirección del vector de velocidad en el cuadrante al que pertenecen, mientras Qs de diferentes tipos están restringidos por el hecho de que no debe haber ningún choque de velocidad, lo que hace Q2s (eyecciones, u < 0,v > 0) y Q4s (sweeps, u > 0,v < 0) emparejado en la dirección de la envergadura. Esto se verifica mediante la inspección de estructuras de velocidad, otros cuadrantes como la uw y vw en SS-HST y las familias separadas en el canal. La alineación sentido de la corriente de Qs ligada a la pared con el mismo tipo en los canales se debe a la modulación de la pared. El campo de flujo medio condicionado a pares Q2-Q4 encontró que los grupos de vórticidad están en el medio de los dos, pero prefieren los dos cizalla capas alojamiento en la parte superior e inferior de Q2s y Q4s respectivamente, lo que hace que la vorticidad envergadura dentro de las grupos de vórticidad hace no cancele. La pared amplifica la diferencia entre los tamaños de baja- y alta-velocidad rayas asociados con parejas de Q2-Q4 se adjuntan como los pares alcanzan cerca de la pared, el cual es verificado por la correlación de la velocidad del sentido de la corriente condicionado a Q2s adjuntos y Q4s con diferentes alturas. Grupos de vórticidad en SS-HST asociados con Q2s o Q4s también están flanqueadas por un contador de rotación de los vórtices sentido de la corriente en la dirección de la envergadura como en el canal. La larga ’despertar’ cónica se origina a partir de los altos grupos de vórticidad ligada a la pared han encontrado los del Álamo et al. (2006) y Flores et al. (2007), que desaparece en SS-HST, sólo es cierto para altos grupos de vórticidad ligada a la pared asociados con Q2s pero no para aquellos asociados con Q4s, cuyo campo de flujo promedio es en realidad muy similar a la de SS-HST. En tercer lugar, las evoluciones temporales de Qs y grupos de vórticidad se estudian mediante el uso de la método inventado por Lozano-Durán & Jiménez (2014b). Las estructuras se clasifican en las ramas, que se organizan más en los gráficos. Ambas resoluciones espaciales y temporales se eligen para ser capaz de capturar el longitud y el tiempo de Kolmogorov puntual más probable en el momento más extrema. Debido al efecto caja mínima, sólo hay un gráfico principal consiste en casi todas las ramas, con su volumen y el número de estructuras instantáneo seguien la energía cinética y enstrofía intermitente. La vida de las ramas, lo que tiene más sentido para las ramas primarias, pierde su significado en el SS-HST debido a las aportaciones de ramas primarias al total de Reynolds estrés o enstrofía son casi insignificantes. Esto también es cierto en la capa exterior de los canales. En cambio, la vida de los gráficos en los canales se compara con el tiempo de ruptura en SS-HST. Grupos de vórticidad están asociados con casi el mismo cuadrante en términos de sus velocidades medias durante su tiempo de vida, especialmente para los relacionados con las eyecciones y sweeps. Al igual que en los canales, las eyecciones de SS-HST se mueven hacia arriba con una velocidad promedio vertical uT (velocidad de fricción) mientras que lo contrario es cierto para los barridos. Grupos de vórticidad, por otra parte, son casi inmóvil en la dirección vertical. En la dirección de sentido de la corriente, que están advección por la velocidad media local y por lo tanto deforman por la diferencia de velocidad media. Sweeps y eyecciones se mueven más rápido y más lento que la velocidad media, respectivamente, tanto por 1.5uT. Grupos de vórticidad se mueven con la misma velocidad que la velocidad media. Se verifica que las estructuras incoherentes cerca de la pared se debe a la pared en vez de pequeño tamaño. Los resultados sugieren fuertemente que las estructuras coherentes en canales no son especialmente asociado con la pared, o incluso con un perfil de cizalladura dado. ABSTRACT Since the wall-bounded turbulence was first recognized more than one century ago, its near wall region (buffer layer) has been studied extensively and becomes relatively well understood due to the low local Reynolds number and narrow scale separation. The region just above the buffer layer, i.e., the logarithmic layer, is receiving increasingly more attention nowadays due to its self-similar property. Flores et al. (20076) and Flores & Jim´enez (2010) show that the statistics of logarithmic layer is kind of independent of other layers, implying that it might be possible to study it separately, which would reduce significantly the computational costs for simulations of the logarithmic layer. Some attempts were tried later by Mizuno & Jimenez (2013), who simulated the logarithmic layer without the buffer layer with obtained statistics agree reasonably well with those of full simulations. Besides, the logarithmic layer might be mimicked by other simpler sheardriven turbulence. For example, Pumir (1996) found that the statistically-stationary homogeneous shear turbulence (SS-HST) also bursts, in a manner strikingly similar to the self-sustaining process in wall-bounded turbulence. Based on these considerations, this thesis tries to reveal to what extent is the logarithmic layer of channels similar to the simplest shear-driven turbulence, SS-HST, by comparing both kinematics and dynamics of coherent structures in the two flows. Results about the channel are shown by Lozano-Dur´an et al. (2012) and Lozano-Dur´an & Jim´enez (20146). The roadmap of this task is divided into three stages. First, SS-HST is investigated by means of a new direct numerical simulation code, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, longterm simulations of HST are ‘minimal’ in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, Lz, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large (Lx > 2LZ, Ly > Lz) to prevent other directions to be constrained as well. It is also found that very long boxes, Lx > 2Ly, couple with the passing period of the shear-periodic boundary condition, and develop strong unphysical linearized bursts. Within those limits, the flow shows interesting similarities and differences with other shear flows, and in particular with the logarithmic layer of wallbounded turbulence. They are explored in some detail. They include a self-sustaining process for large-scale streaks and quasi-periodic bursting. The bursting time scale is approximately universal, ~ 20S~l (S is the mean shear rate), and the availability of two different bursting systems allows the growth of the bursts to be related with some confidence to the shearing of initially isotropic turbulence. It is concluded that SS-HST, conducted within the proper computational parameters, is a very promising system to study shear turbulence in general. Second, the same coherent structures as in channels studied by Lozano-Dur´an et al. (2012), namely three-dimensional vortex clusters (strong dissipation) and Qs (strong tangential Reynolds stress, -uv), are studied by direct numerical simulation of SS-HST with acceptable box aspect ratios and Reynolds number up to Rex ~ 250 (based on Taylor-microscale). The influence of the intermittency to time-independent threshold is discussed. These structures have similar elongations in the streamwise direction to detached families in channels until they are of comparable size to the box. Their fractal dimensions, inner and outer lengths as a function of volume agree well with their counterparts in channels. The study about their spatial organizations found that Qs of the same type are aligned roughly in the direction of the velocity vector in the quadrant they belong to, while Qs of different types are restricted by the fact that there should be no velocity clash, which makes Q2s (ejections, u < 0, v > 0) and Q4s (sweeps, u > 0, v < 0) paired in the spanwise direction. This is verified by inspecting velocity structures, other quadrants such as u-w and v-w in SS-HST and also detached families in the channel. The streamwise alignment of attached Qs with the same type in channels is due to the modulation of the wall. The average flow field conditioned to Q2-Q4 pairs found that vortex clusters are in the middle of the pair, but prefer to the two shear layers lodging at the top and bottom of Q2s and Q4s respectively, which makes the spanwise vorticity inside vortex clusters does not cancel. The wall amplifies the difference between the sizes of low- and high-speed streaks associated with attached Q2-Q4 pairs as the pairs reach closer to the wall, which is verified by the correlation of streamwise velocity conditioned to attached Q2s and Q4s with different heights. Vortex clusters in SS-HST associated with Q2s or Q4s are also flanked by a counter rotating streamwise vortices in the spanwise direction as in the channel. The long conical ‘wake’ originates from tall attached vortex clusters found by del A´ lamo et al. (2006) and Flores et al. (2007b), which disappears in SS-HST, is only true for tall attached vortices associated with Q2s but not for those associated with Q4s, whose averaged flow field is actually quite similar to that in SS-HST. Third, the temporal evolutions of Qs and vortex clusters are studied by using the method invented by Lozano-Dur´an & Jim´enez (2014b). Structures are sorted into branches, which are further organized into graphs. Both spatial and temporal resolutions are chosen to be able to capture the most probable pointwise Kolmogorov length and time at the most extreme moment. Due to the minimal box effect, there is only one main graph consist by almost all the branches, with its instantaneous volume and number of structures follow the intermittent kinetic energy and enstrophy. The lifetime of branches, which makes more sense for primary branches, loses its meaning in SS-HST because the contributions of primary branches to total Reynolds stress or enstrophy are almost negligible. This is also true in the outer layer of channels. Instead, the lifetime of graphs in channels are compared with the bursting time in SS-HST. Vortex clusters are associated with almost the same quadrant in terms of their mean velocities during their life time, especially for those related with ejections and sweeps. As in channels, ejections in SS-HST move upwards with an average vertical velocity uτ (friction velocity) while the opposite is true for sweeps. Vortex clusters, on the other hand, are almost still in the vertical direction. In the streamwise direction, they are advected by the local mean velocity and thus deformed by the mean velocity difference. Sweeps and ejections move faster and slower than the mean velocity respectively, both by 1.5uτ . Vortex clusters move with the same speed as the mean velocity. It is verified that the incoherent structures near the wall is due to the wall instead of small size. The results suggest that coherent structures in channels are not particularly associated with the wall, or even with a given shear profile.
Resumo:
One of the rare examples of a single major gene underlying a naturally occurring behavioral polymorphism is the foraging locus of Drosophila melanogaster. Larvae with the rover allele, forR, have significantly longer foraging path lengths on a yeast paste than do those homozygous for the sitter allele, fors. These variants do not differ in general activity in the absence of food. The evolutionary significance of this polymorphism is not as yet understood. Here we examine the effect of high and low animal rearing densities on the larval foraging path-length phenotype and show that density-dependent natural selection produces changes in this trait. In three unrelated base populations the long path (rover) phenotype was selected for under high-density rearing conditions, whereas the short path (sitter) phenotype was selected for under low-density conditions. Genetic crosses suggested that these changes resulted from alterations in the frequency of the fors allele in the low-density-selected lines. Further experiments showed that density-dependent selection during the larval stage rather than the adult stage of development was sufficient to explain these results. Density-dependent mechanisms may be sufficient to maintain variation in rover and sitter behavior in laboratory populations.
Resumo:
We present a series of 8.4-GHz very-long-baseline radio interferometry images of the nucleus of Centaurus A (NGC5128) made with a Southern Hemisphere array, representing a 3.3-year monitoring effort. The nuclear radio jet is approximately 50 milliarcseconds in extent, or at the 3.5-megaparsec distance of NGC5128, approximately 1 parsec in length. Subluminal motion is seen and structural changes are observed on time scales shorter than 4 months. High-resolution observations at 4.8 and 8.4 GHz made in November 1992 reveal a complex morphology and allow us to unambiguously identify the self-absorbed core located at the southwestern end of the jet.
Resumo:
Very-long-baseline radio interferometry images of the nuclear region of the nearby spiral galaxy M81 reveal the most compact galactic core outside the Galaxy of which the size has been determined: 700 x 300 astronomical units (AU). The observations exclude a starburst or supernova interpretation for the core. Instead they favor an active galactic nucleus. There is evidence for a northeastern jet bent by approximately 35 degrees over a length scale from 700 to 4000 AU. The jet is, on average, directed toward an extended emission region, probably a radio lobe, about 1 kiloparsec (kpc) away from the core. A corresponding emission region was found in the southwest at a distance of only 30 pc from the core. The observed jet is extremely stable and likely to be associated with a steady-state channel. There is no detectable motion along the jet beyond the nominal value of -60 +/- 60 km.s-1. The level of activities in the core region of M81 is intermediate between that of SgrA* and that of powerful radio galaxies and quasars.
Resumo:
Eukaryotic chromosomes terminate with long stretches of short, guanine-rich repeats. These repeats are added de novo by a specialized enzyme, telomerase. In humans telomeres shorten during differentiation, presumably due to the absence of telomerase activity in somatic cells. This phenomenon forms the basis for several models of telomere role in cellular senescence. Barley (Hordeum vulgare L.) telomeres consist of thousands of TTTAGGG repeats, closely resembling other higher eukaryotes. In vivo differentiation and aging resulted in reduction of terminal restriction fragment length paralleled by a decrease of telomere repeat number. Dedifferentiation in callus culture resulted in an increase of the terminal restriction fragment length and in the number of telomere repeats. Long-term callus cultures had very long telomeres. Absolute telomere lengths were genotype dependent, but the relative changes due to differentiation, dedifferentiation, and long-term callus culture were consistent among genotypes. A model is presented to describe the potential role of the telomere length in regulation of a cell's mitotic activity and senescence.
Resumo:
We consider the electron dynamics and transport properties of one-dimensional continuous models with random, short-range correlated impurities. We develop a generalized Poincare map formalism to cast the Schrodinger equation for any potential into a discrete set of equations, illustrating its application by means of a specific example. We then concentrate on the case of a Kronig-Penney model with dimer impurities. The previous technique allows us to show that this model presents infinitely many resonances (zeroes of the reflection coefficient at a single dimer) that give rise to a band of extended states, in contradiction with the general viewpoint that all one-dimensional models with random potentials support only localized states. We report on exact transfer-matrix numerical calculations of the transmission coefFicient, density of states, and localization length for various strengths of disorder. The most important conclusion so obtained is that this kind of system has a very large number of extended states. Multifractal analysis of very long systems clearly demonstrates the extended character of such states in the thermodynamic limit. In closing, we brieBy discuss the relevance of these results in several physical contexts.
Resumo:
The utility of the HMBC experiment for structure elucidation is unquestionable, but the nature of the coupling pathways leading to correlations in an HMBC experiment creates the potential for misinterpretation. This misinterpretation potential is intimately linked to the size of the long-range heteronuclear couplings involved, and may become troublesome in those cases of a particularly strong 2JCH correlation that might be mistaken for a 3JCH correlation or a 4JCH correlation of appreciable strength that could be mistaken for a weaker 3JCH correlation. To address these potential avenues of confusion, work from several laboratories has been focused on the development of what might be considered “coupling pathway edited” long-range heteronuclear correlation experiments that are derived from or related to the HMBC experiment. The first example of an effort to address the problems associated with correlation path length was seen in the heteronucleus-detected XCORFE experiment described by Reynolds and co-workers that predated the development of the HMBC experiment. Proton-detected analogs of the HMBC experiment intended to differentiate 2JCH correlations from nJCH correlations where n = 3, 4, include the 2J,3J-HMBC, HMBC-RELAY, H2BC, edited-HMBC, and HAT H2BC experiments. The principles underlying the critical components of each of these experiments are discussed and experimental verification of the results that can be obtained using model compounds are shown. This contribution concludes with a brief discussion of the 1,1-ADEQUATE experiments that provide an alternative means of identifying adjacent protonated and non-protonated carbon correlations by exploiting 1JCC correlations at natural abundance.
Resumo:
Lepidotrichia are dermal elements located at the distal margin of osteichthyan fins. In sarcopterygians and actinopterygians, the term has been used to denote the most distal bony hemisegments and also the more proximal, scale-covered segments which overlie endochondral bones of the fin. In certain sarcopterygian fishes, including the Rhizodontida, these more proximal, basal segments are very long, extending at least half the length of the fin. The basal segments have a subcircular cross section, rather than the crescentic cross section of the distal lepidotrichial hemisegments, which lack a scale cover and comprise short, generally regular, elements. In rhizodonts and other sarcopterygians, e.g. Eusthenopteron, the basal elements are the first to appear during fin development, followed by the endochondral bones and then the distal lepidotrichia. This sequence contradicts the 'clock-face model' of fin development proposed by Thorogood in which the formation of endochondral bones is followed by development of lepidotrichia. However, if elongate basal 'lepidotrichia' are not homologous with more distal, jointed lepidotrichia and if the latter form within a distal fin-fold and the former outside this fold, then Thorogood's 'clock-face' model remains valid. This interpretation might indicate that the fin-fold has been lost in early digited stem-tetrapods such as Acanthostega and Ichthyostega and elongate basal elements, but not true lepidotrichia, occur in the caudal fins of these taxa.
Resumo:
Understanding the driving forces for the hepatic uptake of endogenous and exogenous substrates in isolated cells and organs is fundamental to describing the underlying hepatic physiology/pharmacology. In this study we investigated whether uptake of plasma protein-bound [H-3]-palmitate across the hepatocyte wall is governed by the transmembrane electrical potential difference (PD). Uptake was studied in isolated hepatocytes and isolated perfused rat livers (IPL). Protein-binding and vasoactive properties of the different perfusates were determined using in vitro heptane/buffer partitioning studies and the multiple indicator dilution (MID) technique in the IPL, respectively. Altering hepatocyte PD by perfusate ion substitution resulted in either a substantial depolarization (-14 +/- 1 mV, n = 12, mean +/- S.E., substituting choline for Na+) or hyperpolarization (-46 +/- 3 mV, n = 12, mean +/- S.E., substituting nitrate for Cl-). Perfusate ion substitution also affected the equilibrium binding constant for the palmitate-albumin complex. IPL studies suggested that, other than with gluconate buffer, hepatic [H-3]-palmitate extraction was not affected by the buffer used, implying PD was not a determinant of extraction. [H-3]-Palmitate extraction was much lower (p < 0.05) when gluconate was substituted for Cl- ion. This work contrasts with that for the extraction of [H-3]-alanine where hepatic extraction fraction was significantly reduced during depolarization. Changing the albumin concentration did not affect hepatocyte PD, and [H-3]-palmitate clearance into isolated hepatocytes was not affected by the buffers used. MID studies with vascular and extravascular references revealed that, with the gluconate substituted buffer, the extravascular volume possibly increased the diffusional path length thus explaining reduced [H-3]-palmitate extraction fraction in the IPL.
Resumo:
We examined the nature of the referral patterns in the email telemedicine network operated by the Swinfen Charitable Trust with a view to informing long-term resource planning. Over the first six years of operation, 62 hospitals from 19 countries registered with the Trust in order to be able to refer cases for specialist advice; 55 of these hospitals (89%) actually referred cases during this period. During the first six years of operation, nearly 1000 referrals were submitted and answered, from a wide range of specialty areas. Between July 2002 and March 2005 the referral rate rose from 127 to 318 cases per year. The median length of time required to provide a specialist's response was 2.3 days during the first 12 months and 1.8 days during the last 12 months. Five hospitals submitted cases for more than four years (together sending a total of 493 cases). Their activity data showed a trend to declining referral rates over the four-year period, which may represent successful knowledge transfer. There is some evidence that over the last three years the growth in demand has been exponential, while the growth in resources available (i.e. specialists) has been linear, a situation which cannot continue for very long before demand outstrips supply.