946 resultados para Vertical mixing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because of its relevance for the global climate the Atlantic meridional overturning circulation (AMOC) has been a major research focus for many years. Yet the question of which physical mechanisms ultimately drive the AMOC, in the sense of providing its energy supply, remains a matter of controversy. Here we review both observational data and model results concerning the two main candidates: vertical mixing processes in the ocean's interior and wind-induced Ekman upwelling in the Southern Ocean. In distinction to the energy source we also discuss the role of surface heat and freshwater fluxes, which influence the volume transport of the meridional overturning circulation and shape its spatial circulation pattern without actually supplying energy to the overturning itself in steady state. We conclude that both wind-driven upwelling and vertical mixing are likely contributing to driving the observed circulation. To quantify their respective contributions, future research needs to address some open questions, which we outline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The understanding of the continental carbon budget is essential to predict future climate change. In order to quantify CO₂ and CH₄ fluxes at the regional scale, a measurement system was installed at the former radio tower in Beromünster as part of the Swiss greenhouse gas monitoring network (CarboCount CH). We have been measuring the mixing ratios of CO₂, CH₄ and CO on this tower with sample inlets at 12.5, 44.6, 71.5, 131.6 and 212.5 m above ground level using a cavity ring down spectroscopy (CRDS) analyzer. The first 2-year (December 2012–December 2014) continuous atmospheric record was analyzed for seasonal and diurnal variations and interspecies correlations. In addition, storage fluxes were calculated from the hourly profiles along the tower. The atmospheric growth rates from 2013 to 2014 determined from this 2-year data set were 1.78 ppm yr⁻¹, 9.66 ppb yr⁻¹ and and -1.27 ppb yr⁻¹ for CO₂, CH₄ and CO, respectively. After detrending, clear seasonal cycles were detected for CO₂ and CO, whereas CH₄ showed a stable baseline suggesting a net balance between sources and sinks over the course of the year. CO and CO₂ were strongly correlated (r² > 0.75) in winter (DJF), but almost uncorrelated in summer. In winter, anthropogenic emissions dominate the biospheric CO₂ fluxes and the variations in mixing ratios are large due to reduced vertical mixing. The diurnal variations of all species showed distinct cycles in spring and summer, with the lowest sampling level showing the most pronounced diurnal amplitudes. The storage flux estimates exhibited reasonable diurnal shapes for CO₂, but underestimated the strength of the surface sinks during daytime. This seems plausible, keeping in mind that we were only able to calculate the storage fluxes along the profile of the tower but not the flux into or out of this profile, since no Eddy covariance flux measurements were taken at the top of the tower.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The McMurdo Dry Valleys, Antarctica (MDV) are among the oldest landscapes on Earth, and some landforms there present an intriguing apparent contradiction such that millions of years old surface deposits maintain their meter-scale morphology despite the fact that measured erosion rates are 0.1-4 m/Ma. We analyzed the concentration of cosmic ray-produced 10Be and 26Al in quartz sands from regolith directly above and below two well-documented ash deposits in the MDV, the Arena Valley ash (40Ar/39Ar age of 4.33 Ma) and the Hart ash (K-Ar age of 3.9 Ma). Measured concentrations of 10Be and 26Al are significantly less than expected given the age of the in situ air fall ashes and are best interpreted as reflecting the degradation rate of the overlying sediments. The erosion rate of the material above the Arena Valley ash that best explains the observed isotope profiles is 3.5 ± 0.41 x 10**-5 g/cm**2/yr (~0.19 m/Ma) for the past ~4 Ma. For the Hart ash, the erosion rate is 4.8 ± 0.21 x 10**-4 g/cm**2/yr (~2.6 m/Ma) for the past ~1 Ma. The concentration profiles do not show signs of mixing, creep, or deflation caused by sublimation of ground ice. These results indicate that the slow, steady lowering of the surface without vertical mixing may allow landforms to maintain their meter-scale morphology even though they are actively eroding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abundant and diverse polycystine radiolarian faunas from ODP Leg 181, Site 1123 (0-1.2 Ma at ~21 kyr resolution) and Site 1124 (0-0.6 Ma, ~5 kyr resolution, with a disconformity between 0.42-0.22 Ma) have been used to infer Pleistocene-Holocene paleoceanographic changes north of the Subtropical Front (STF), offshore eastern New Zealand, southwest Pacific. The abundance of warm-water taxa relative to cool-water taxa was used to determine a radiolarian paleotemperature index, the Subtropical (ST) Index. ST Index variations show strong covariance with benthic foraminifera oxygen isotope records from Site 1123 and exhibit similar patterns through Glacial-Interglacial (G-I) cycles of marine isotope stages (MIS) 15-1. At Site 1123, warm-water taxa peak in abundance during Interglacials (reaching ~8% of the total fauna). Within Glacials cool-water taxa increase to ~15% (MIS2) of the fauna. Changes in radiolarian assemblages at Site 1124 indicate similar but much better resolved trends through MIS15-12 and 7-1. Pronounced increases in warm-water taxa occur at the onset of Interglacials (reaching ~15% of the fauna), whereas the abundance of cool-water taxa increases in Glacials peaking in MIS2 (~17% of the fauna). Overall warmer conditions at Site 1124 during the last 600 kyrs indicate sustained influence of the subtropical, warm East Cape Current (ECC). During Interglacials radiolarian assemblages suggest an increase in marine productivity at both sites which might be due to predominance of micronutrient-rich Subtropical Water. At Site 1123, an increased abundance of deep-dwelling taxa in MIS 13 and 9 suggests enhanced vertical mixing. During Glacials, reduced vigour of ECC flow combined with northward expansion of cool, micronutrient-poor Subantarctic Water occurs. Only at Site 1123 there is evidence of a longitudinal shift of the STF, reaching as far north as 41°S.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ecological succession provides a widely accepted description of seasonal changes in phytoplankton and mesozooplankton assemblages in the natural environment, but concurrent changes in smaller (i.e. microbes) and larger (i.e. macroplankton) organisms are not included in the model because plankton ranging from bacteria to jellies are seldom sampled and analyzed simultaneously. Here we studied, for the first time in the aquatic literature, the succession of marine plankton in the whole-plankton assemblage that spanned 5 orders of magnitude in size from microbes to macroplankton predators (not including fish or fish larvae, for which no consistent data were available). Samples were collected in the northwestern Mediterranean Sea (Bay of Villefranche) weekly during 10 months. Simultaneously collected samples were analyzed by flow cytometry, inverse microscopy, FlowCam, and ZooScan. The whole-plankton assemblage underwent sharp reorganizations that corresponded to bottom-up events of vertical mixing in the water-column, and its development was top-down controlled by large gelatinous filter feeders and predators. Based on the results provided by our novel whole-plankton assemblage approach, we propose a new comprehensive conceptual model of the annual plankton succession (i.e. whole plankton model) characterized by both stepwise stacking of four broad trophic communities from early spring through summer, which is a new concept, and progressive replacement of ecological plankton categories within the different trophic communities, as recognised traditionally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the years 2000 and 2001 we measured methane concentrations exceeding up to two orders of magnitude the equilibrium with the atmosphere in the water column on the SW-Spitsbergen continental shelf. This methane anomaly extended from its centre on the shelf westwards over the upper slope and eastwards well into the inner basins of the two southernmost Spitsbergen fjords, the Hornsundfjord and the van Mijenfjord. Methane concentrations and stable carbon isotopic ratios varied between 2 and 240 nM, and between -53 per mill and -20 per mill VPDB, respectively. Methane in high concentrations was depleted in 13C whereas in low concentrations d13CCH4 values were highly variable. On the continental shelf we found that methane discharged from seeps on top of sandy and gravelly banks is isotopically heavier than methane escaping from troughs filled with silty and clayey sediments. These distinct isotopic signatures suggest that methane is gently released from several inter-granular seepages or micro-seepages widely spread over the shelf. A potential migration path for thermogenic or hydrate methane may be the Hornsund Fracture Zone, a south-north running reactivated fault system created by stretching of the continental crust. After discharge into the water column, local water currents fed by Atlantic water, coastal water, and freshwater outflows from the fjords further determine pathways and fate of the methane. We used d18Owater and 222Rn data to trace origin and advection of the local water masses and water mixing processes. Methane spreads predominantly along pycnoclines and by vertical mixing. During transport methane is influenced simultaneously by oxidation and dilution, as well as loss into the atmosphere. Together these processes cause the spatial variability of the anomaly and heterogeneity in d13CCH4 in this polar shelf environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445