962 resultados para Vertex Transitive Graph
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
In this thesis we study the properties of two large dynamic networks, the competition network of advertisers on the Google and Bing search engines and the dynamic network of friend relationships among avatars in the massively multiplayer online game (MMOG) Planetside 2. We are particularly interested in removal patterns in these networks. Our main finding is that in both of these networks the nodes which are most commonly removed are minor near isolated nodes. We also investigate the process of merging of two large networks using data captured during the merger of servers of Planetside 2. We found that the original network structures do not really merge but rather they get gradually replaced by newcomers not associated with the original structures. In the final part of the thesis we investigate the concept of motifs in the Barabási-Albert random graph. We establish some bounds on the number of motifs in this graph.
Resumo:
We examine properties of binary relations that complement quasi-transitivity and Suzumura consistency in the sense that they, together with the original axiom(s), are equivalent to transitivity. In general, the conjunction of quasi-transitivity and Suzumura consistency is strictly weaker than transitivity but in the case of collective choice rules that satisfy further properties, the conjunction of quasi- transitivity and Suzumura consistency implies transitivity of the social relation. We prove this observation by characterizing the Pareto rule as the only collective choice rule such that collective preference relations are quasi-transitive and Suzumura consistent but not necessarily complete.
Resumo:
In this paper, two notions, the clique irreducibility and clique vertex irreducibility are discussed. A graph G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and it is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G. It is proved that L(G) is clique irreducible if and only if every triangle in G has a vertex of degree two. The conditions for the iterations of line graph, the Gallai graphs, the anti-Gallai graphs and its iterations to be clique irreducible and clique vertex irreducible are also obtained.
Resumo:
In this paper, we study the domination number, the global dom ination number, the cographic domination number, the global co graphic domination number and the independent domination number of all the graph products which are non-complete extended p-sums (NEPS) of two graphs.
Resumo:
We define a new graph operator called the P3 intersection graph, P3(G)- the intersection graph of all induced 3-paths in G. A characterization of graphs G for which P-3 (G) is bipartite is given . Forbidden subgraph characterization for P3 (G) having properties of being chordal , H-free, complete are also obtained . For integers a and b with a > 1 and b > a - 1, it is shown that there exists a graph G such that X(G) = a, X(P3( G)) = b, where X is the chromatic number of G. For the domination number -y(G), we construct graphs G such that -y(G) = a and -y (P3(G)) = b for any two positive numbers a > 1 and b. Similar construction for the independence number and radius, diameter relations are also discussed.
Resumo:
Abstract. The edge C4 graph E4(G) of a graph G has all the edges of Gas its vertices, two vertices in E4(G) are adjacent if their corresponding edges in G are either incident or are opposite edges of some C4. In this paper, characterizations for E4(G) being connected, complete, bipartite, tree etc are given. We have also proved that E4(G) has no forbidden subgraph characterization. Some dynamical behaviour such as convergence, mortality and touching number are also studied
Resumo:
Abstract. The paper deals with graph operators-the Gallai graphs and the anti-Gallai graphs. We prove the existence of a finite family of forbidden subgraphs for the Gallai graphs and the anti-Gallai graphs to be H-free for any finite graph H. The case of complement reducible graphs-cographs is discussed in detail. Some relations between the chromatic number, the radius and the diameter of a graph and its Gallai and anti-Gallai graphs are also obtained.
Resumo:
Antimedian graphs are introduced as the graphs in which for every triple of vertices there exists a unique vertex x that maximizes the sum of the distances from x to the vertices of the triple. The Cartesian product of graphs is antimedian if and only if its factors are antimedian. It is proved that multiplying a non-antimedian vertex in an antimedian graph yields a larger antimedian graph. Thin even belts are introduced and proved to be antimedian. A characterization of antimedian trees is given that leads to a linear recognition algorithm.
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
A profile on a graph G is any nonempty multiset whose elements are vertices from G. The corresponding remoteness function associates to each vertex x 2 V.G/ the sum of distances from x to the vertices in the profile. Starting from some nice and useful properties of the remoteness function in hypercubes, the remoteness function is studied in arbitrary median graphs with respect to their isometric embeddings in hypercubes. In particular, a relation between the vertices in a median graph G whose remoteness function is maximum (antimedian set of G) with the antimedian set of the host hypercube is found. While for odd profiles the antimedian set is an independent set that lies in the strict boundary of a median graph, there exist median graphs in which special even profiles yield a constant remoteness function. We characterize such median graphs in two ways: as the graphs whose periphery transversal number is 2, and as the graphs with the geodetic number equal to 2. Finally, we present an algorithm that, given a graph G on n vertices and m edges, decides in O.mlog n/ time whether G is a median graph with geodetic number 2
Resumo:
A graph G is strongly distance-balanced if for every edge uv of G and every i 0 the number of vertices x with d.x; u/ D d.x; v/ 1 D i equals the number of vertices y with d.y; v/ D d.y; u/ 1 D i. It is proved that the strong product of graphs is strongly distance-balanced if and only if both factors are strongly distance-balanced. It is also proved that connected components of the direct product of two bipartite graphs are strongly distancebalanced if and only if both factors are strongly distance-balanced. Additionally, a new characterization of distance-balanced graphs and an algorithm of time complexity O.mn/ for their recognition, wheremis the number of edges and n the number of vertices of the graph in question, are given