965 resultados para Vertebral Rotation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To analyse whether bone mineral density (BMD) assessment is required in postmenopausal women presenting with low trauma vertebral fracture. Methods: Women with vertebral fracture diagnosed over a 10 year period were recruited from our database. The following were excluded: (a) patients with high energy trauma; (b) patients with malignancies; (c) patients with a metabolic bone disease other than osteoporosis. All postmenopausal women were included in whom BMD had been evaluated at both the lumbar spine and femoral neck by dual energy x ray absorptiometry during the six months after the diagnosis. Patients with a potential cause of osteoporosis other than age and menopause were not considered. A total of 215 patients were identified. Results: The mean (SD) age of the patients was 65.9 (6.9) years. BMD at the lumbar spine was 0.725 (0.128) g/cm2 and the T score was ¿2.94 (1.22); BMD at the femoral neck was 0.598 (0.095) g/cm2 and the T score was ¿2.22 (0.89). The BMD of the patients was significantly lower than that of the general population at both the lumbar spine and femoral neck. When the lowest value of the two analysed zones was considered, six patients (3%) showed a normal BMD, 51 (23.5%) osteopenia, and 158 (73.5%) osteoporosis. The prevalence of osteoporosis at the femoral neck increased with age; it was 25% in patients under 60, 35% in patients aged 60¿70, and 60% in patients over 70. Conclusion: These results indicate that bone densitometry is not required in postmenopausal women with clinically diagnosed vertebral fractures if it is performed only to confirm the existence of a low BMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebral fracture (VF) is the most common osteoporotic fracture and is associated with high morbidity and mortality. Conservative treatment combining antalgic agents and rest is usually recommended for symptomatic VFs. The aim of this paper is to review the randomized controlled trials comparing the efficacy and safety of percutaneous vertebroplasty (VP) and percutaneous balloon kyphoplasty (KP) versus conservative treatment. VP and KP procedures are associated with an acceptable general safety. Although the case series investigating VP/KP have all shown an outstanding analgesic benefit, randomized controlled studies are rare and have yielded contradictory results. In several of these studies, a short-term analgesic benefit was observed, except in the prospective randomized sham-controlled studies. A long-term analgesic and functional benefit has rarely been noted. Several recent studies have shown that both VP and KP are associated with an increased risk of new VFs. These fractures are mostly VFs adjacent to the procedure, and they occur within a shorter time period than VFs in other locations. The main risk factors include the number of preexisting VFs, the number of VPs/KPs performed, age, decreased bone mineral density, and intradiscal cement leakage. It is therefore important to involve the patients to whom VP/KP is being proposed in the decision-making process. It is also essential to rapidly initiate a specific osteoporosis therapy when a VF occurs (ideally a bone anabolic treatment) so as to reduce the risk of fracture. Randomized controlled studies are necessary in order to better define the profile of patients who likely benefit the most from VP/KP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil organic matter (SOM) plays a crucial role in soil quality and can act as an atmospheric C-CO2 sink under conservationist management systems. This study aimed to evaluate the long-term effects (19 years) of tillage (CT-conventional tillage and NT-no tillage) and crop rotations (R0-monoculture system, R1-winter crop rotation, and R2- intensive crop rotation) on total, particulate and mineral-associated organic carbon (C) stocks of an originally degraded Red Oxisol in Cruz Alta, RS, Southern Brazil. The climate is humid subtropical Cfa 2a (Köppen classification), the mean annual precipitation 1,774 mm and mean annual temperature 19.2 ºC. The plots were divided into four segments, of which each was sampled in the layers 0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m. Sampling was performed manually by opening small trenches. The SOM pools were determined by physical fractionation. Soil C stocks had a linear relationship with annual crop C inputs, regardless of the tillage systems. Thus, soil disturbance had a minor effect on SOM turnover. In the 0-0.30 m layer, soil C sequestration ranged from 0 to 0.51 Mg ha-1 yr-1, using the CT R0 treatment as base-line; crop rotation systems had more influence on soil stock C than tillage systems. The mean C sequestration rate of the cropping systems was 0.13 Mg ha-1 yr-1 higher in NT than CT. This result was associated to the higher C input by crops due to the improvement in soil quality under long-term no-tillage. The particulate C fraction was a sensitive indicator of soil management quality, while mineral-associated organic C was the main pool of atmospheric C fixed in this clayey Oxisol. The C retention in this stable SOM fraction accounts for 81 and 89 % of total C sequestration in the treatments NT R1 and NT R2, respectively, in relation to the same cropping systems under CT. The highest C management index was observed in NT R2, confirming the capacity of this soil management practice to improve the soil C stock qualitatively in relation to CT R0. The results highlighted the diversification of crop rotation with cover crops as a crucial strategy for atmospheric C-CO2 sequestration and SOM quality improvement in highly weathered subtropical Oxisols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM). The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C) mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification), mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a) conventional tillage (CT) and (b) no tillage (NT) in combination with three cropping systems: (a) R0- monoculture system (soybean/wheat), (b) R1- winter crop rotation (soybean/wheat/soybean/black oat), and (c) R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat). The soil C-CO2 efflux was measured every 14 days for two years (48 measurements), by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between tillage systems were noticed for C-CO2 evolution. Soil C-CO2 effluxes followed a bi-modal pattern, with peaks in October/November and February/March. The highest emission was recorded in the summer and the lowest in the winter. The C-CO2 effluxes were weakly correlated to air temperature and not correlated to soil moisture. Based on the soil C conservation indexes investigated, NT associated to intensive crop rotation was more C conserving than CT with monoculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil compaction can be minimized either mechanically or biologically, using plant species with vigorous root systems. An experiment was carried out with soybean (Glycine max) in rotation with triticale (X Triticosecale) and sunflower (Helianthus annuus) in fall-winter associated with pearl millet (Pennisetum glaucum), grain sorghum (Sorghum bicolor) or sunn hemp (Crotalaria juncea) in spring. Crop rotation under no-till was compared with mechanical chiseling. The experiment was carried out in Botucatu, São Paulo State, Brazil. Soil quality was estimated using the S index and soil water retention curves (in the layers of 0-0.05, 0.075-0.125, 0.15-0.20, 0.275-0.325, and 0.475-0.525 m deep). Crop rotation and chiseling improved soil quality, increasing the S index to over 0.035 to a depth of 20 cm in the soil profile. The improved soil quality, as shown by the S index, makes the use of mechanical chiseling unnecessary, since after 3 years the soil physical quality under no-tilled crop rotation and chiseling was similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A class of exact solutions of Hele-Shaw flows without surface tension in a rotating cell is reported. We show that the interplay between injection and rotation modifies the scenario of formation of finite-time cusp singularities. For a subclass of solutions, we show that, for any given initial condition, there exists a critical rotation rate above which cusp formation is suppressed. We also find an exact sufficient condition to avoid cusps simultaneously for all initial conditions within the above subclass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exchange-biased Ni/FeF2 films have been investigated using vector coil vibrating-sample magnetometry as a function of the cooling field strength HFC . In films with epitaxial FeF2 , a loop bifurcation develops with increasing HFC as it divides into two sub-loops shifted oppositely from zero field by the same amount. The positively biased sub-loop grows in size with HFC until only a single positively shifted loop is found. Throughout this process, the negative and positive (sub)loop shifts maintain the same discrete value. This is in sharp contrast to films with twinned FeF2 where the exchange field gradually changes with increasing HFC . The transverse magnetization shows clear correlations with the longitudinal subloops. Interestingly, over 85% of the Ni reverses its magnetization by rotation, either in one step or through two successive rotations. These results are due to the single-crystal nature of the antiferromagnetic FeF2 , which breaks down into two opposite regions of large domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphorus supply to crops in tropical soils is deficient due to its somewhat insoluble nature in soil, and addition of P fertilizers has been necessary to achieve high yields. The objective of this study was to examine the mechanisms through which a cover crop (Congo grass - Brachiaria ruziziensis) in rotation with soybean can enhance soil and fertilizer P availability using long-term field trials and laboratory chemical fractionation approaches. The experimental field had been cropped to soybean in rotation with several species under no-till for six years. An application rate of no P or 240 kg ha-1 of P2O5 had been applied as triple superphosphate or as Arad rock phosphate. In April 2009, once more 0.0 or 80.0 kg ha-1 of P2O5 was applied to the same plots when Congo grass was planted. In November 2009, after Congo grass desiccation, soil samples were taken from the 0-5 and 5-10 cm depth layer and soil P was fractionated. Soil-available P increased to the depth of 10 cm through growing Congo grass when P fertilizers were applied. The C:P ratio was also increased by the cover crop. Congo grass cultivation increased P content in the soil humic fraction to the depth of 10 cm. Congo grass increases soil P availability by preventing fertilizer from being adsorbed and by increasing soil organic P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo) from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L.), and Raphanus sativus L.) were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP) was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.