991 resultados para Velocity Measurements


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In normal dogs and dogs with subaortic stenosis, it is known that the subcostal transducer site provides higher left ventricular ejection velocities than does the left apical site. We hypothesized that aortic flow velocities could also be obtained from the right parasternal long-axis view, optimized for the placement of the Doppler cursor as parallel as possible into the aortic root. In 15 healthy dogs and 13 healthy cats, high-pulsed repetition frequency Doppler flow velocity measurements in the proximal aorta were performed using two-dimensional echocardiographic guidance. The mean [ +/- standard error of the mean (SEM)] peak aortic flow velocities in healthy dogs were as follows: subcostal site 1.46 +/- 0.05 m/s; apical site 1.12 +/- 0.06 m/s; right parasternal long-axis site 1.09 +/- 0.05 m/s. In healthy cats, the following peak aortic flow velocities were observed: apical site 0.87 +/- 0.03m/s; right parasternal long-axis site 0.87 +/- 0.03 m/s. Aortic flow velocities obtained from the subcostal site were significantly higher in healthy dogs than those obtained from the left apical and right parasternal long-axis site (P< 0.001). There was no statistical difference between the peak aortic flow velocities obtained from right parasternal long-axis and left apical transducer position in all groups. We conclude therefore that right parasternal long-axis and left apical-derived aortic flow velocities are similar and may be used interchangeably in healthy dogs and cats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: Nebivolol, a highly selective beta1-adrenergic receptor-blocker, increases basal and stimulated endothelial nitric oxide (NO)-release. It is unknown, whether coronary perfusion is improved by the increase in NO availability. Therefore, we sought to evaluate the effect of nebivolol on coronary flow reserve (CFR) and collateral flow. METHODS: Doppler-flow wire derived coronary flow velocity measurements were obtained in ten controls and eight patients with coronary artery disease (CAD) at rest and after intracoronary nebivolol. CFR was defined as maximal flow during adenosine-induced hyperemia divided by resting flow. In the CAD group, collateral flow was determined after dilatation of a flow-limiting coronary stenosis. Collateral flow index (CFI) was defined as the ratio of flow velocity during balloon inflation divided by resting flow. RESULTS: CFR at rest was 3.0+/-0.6 in controls and 2.1+/-0.4 in CAD patients. After intracoronary doses of 0.1, 0.25, and 0.5 mg nebivolol, CFR increased to 3.4+/-0.7, 3.9+/-0.9, and 4.0+/-0.1 (p<0.01) in controls, and to 2.3+/-0.7, 2.6+/-0.9, and 2.6+/-0.5 (p<0.05) in CAD patients. CFI decreased significantly with intracoronary nebivolol and correlated to changes in heart rate (r=0.75, p<0.001) and rate-pressure product (r=0.59, p=0.001). DISCUSSION: Intracoronary nebivolol is associated with a significant increase in CFR due to reduction in resting flow (controls), or due to an increase in maximal coronary flow (CAD patients). CFI decreased with nebivolol parallel to the reduction in myocardial oxygen consumption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For a fluid dynamics experimental flow measurement technique, particle image velocimetry (PIV) provides significant advantages over other measurement techniques in its field. In contrast to temperature and pressure based probe measurements or other laser diagnostic techniques including laser Doppler velocimetry (LDV) and phase Doppler particle analysis (PDPA), PIV is unique due to its whole field measurement capability, non-intrusive nature, and ability to collect a vast amount of experimental data in a short time frame providing both quantitative and qualitative insight. These properties make PIV a desirable measurement technique for studies encompassing a broad range of fluid dynamics applications. However, as an optical measurement technique, PIV also requires a substantial technical understanding and application experience to acquire consistent, reliable results. Both a technical understanding of particle image velocimetry and practical application experience are gained by applying a planar PIV system at Michigan Technological University’s Combustion Science Exploration Laboratory (CSEL) and Alternative Fuels Combustion Laboratory (AFCL). Here a PIV system was applied to non-reacting and reacting gaseous environments to make two component planar PIV as well as three component stereographic PIV flow field velocity measurements in conjunction with chemiluminescence imaging in the case of reacting flows. This thesis outlines near surface flow field characteristics in a tumble strip lined channel, three component velocity profiles of non-reacting and reacting swirled flow in a swirl stabilized lean condition premixed/prevaporized-fuel model gas turbine combustor operating on methane at 5-7 kW, and two component planar PIV measurements characterizing the AFCL’s 1.1 liter closed combustion chamber under dual fan driven turbulent mixing flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The South Florida Water Management District (SFWMD) manages and operates numerous water control structures that are subject to scour. In an effort to reduce scour downstream of these gated structures, laboratory experiments were performed to investigate the effect of active air-injection downstream of the terminal structure of a gated spillway on the depth of the scour hole. A literature review involving similar research revealed significant variables such as the ratio of headwater-to-tailwater depths, the diffuser angle, sediment uniformity, and the ratio of air-to-water volumetric discharge values. The experimental design was based on the analysis of several of these non-dimensional parameters. Bed scouring at stilling basins downstream of gated spillways has been identified as posing a serious risk to the spillway’s structural stability. Although this type of scour has been studied in the past, it continues to represent a real threat to water control structures and requires additional attention. A hydraulic scour channel comprised of a head tank, flow straightening section, gated spillway, stilling basin, scour section, sediment trap, and tail-tank was used to further this analysis. Experiments were performed in a laboratory channel consisting of a 1:30 scale model of the SFWMD S65E spillway structure. To ascertain the feasibility of air injection for scour reduction a proof-of-concept study was performed. Experiments were conducted without air entrainment and with high, medium, and low air entrainment rates for high and low headwater conditions. For the cases with no air entrainment it was found that there was excessive scour downstream of the structure due to a downward roller formed upon exiting the downstream sill of the stilling basin. When air was introduced vertically just downstream of, and at the same level as, the stilling basin sill, it was found that air entrainment does reduce scour depth by up to 58% depending on the air flow rate, but shifts the deepest scour location to the sides of the channel bed instead of the center. Various hydraulic flow conditions were tested without air injection to verify which scenario caused more scour. That scenario, uncontrolled free, in which water does not contact the gate and the water elevation in the stilling basin is lower than the spillway crest, would be used for the remainder of experiments testing air injection. Various air flow rates, diffuser elevations, air hole diameters, air hole spacings, diffuser angles and widths were tested in over 120 experiments. Optimal parameters include air injection at a rate that results in a water-to-air ratio of 0.28, air holes 1.016mm in diameter the entire width of the stilling basin, and a vertically orientated injection pattern. Detailed flow measurements were collected for one case using air injection and one without. An identical flow scenario was used for each experiment, namely that of a high flow rate and upstream headwater depth and a low tailwater depth. Equilibrium bed scour and velocity measurements were taken using an Acoustic Doppler Velocimeter at nearly 3000 points. Velocity data was used to construct a vector plot in order to identify which flow components contribute to the scour hole. Additionally, turbulence parameters were calculated in an effort to help understand why air-injection reduced bed scour. Turbulence intensities, normalized mean flow, normalized kinetic energy, and anisotropy of turbulence plots were constructed. A clear trend emerged that showed air-injection reduces turbulence near the bed and therefore reduces scour potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many rehabilitation robots use electric motors with gears. The backdrivability of geared drives is poor due to friction. While it is common practice to use velocity measurements to compensate for kinetic friction, breakaway friction usually cannot be compensated for without the use of an additional force sensor that directly measures the interaction force between the human and the robot. Therefore, in robots without force sensors, subjects must overcome a large breakaway torque to initiate user-driven movements, which are important for motor learning. In this technical note, a new methodology to compensate for both kinetic and breakaway friction is presented. The basic strategy is to take advantage of the fact that, for rehabilitation exercises, the direction of the desired motion is often known. By applying the new method to three implementation examples, including drives with gear reduction ratios 100-435, the peak breakaway torque could be reduced by 60-80%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In our daily life, small flows in the semicircular canals (SCCs) of the inner ear displace a sensory structure called the cupula which mediates the transduction of head angular velocities to afferent signals. We consider a dysfunction of the SCCs known as canalithiasis. Under this condition, small debris particles disturb the flow in the SCCs and can cause benign paroxysmal positional vertigo (BPPV), arguably the most common form of vertigo in humans. The diagnosis of BPPV is mainly based on the analysis of typical eye movements (positional nystagmus) following provocative head maneuvers that are known to lead to vertigo in BPPV patients. These eye movements are triggered by the vestibulo-ocular reflex, and their velocity provides an indirect measurement of the cupula displacement. An attenuation of the vertigo and the nystagmus is often observed when the provocative maneuver is repeated. This attenuation is known as BPPV fatigue. It was not quantitatively described so far, and the mechanisms causing it remain unknown. We quantify fatigue by eye velocity measurements and propose a fluid dynamic interpretation of our results based on a computational model for the fluid–particle dynamics of a SCC with canalithiasis. Our model suggests that the particles may not go back to their initial position after a first head maneuver such that a second head maneuver leads to different particle trajectories causing smaller cupula displacements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jakobshavn Isbrae is a major ice stream that drains the west-central Greenland ice sheet and becomes afloat in Jakobshavn Isfiord (69degreesN, 49degreesW), where it has maintained the world's fastest-known sustained velocity and calving rate (7 km a(-1)) for at least four decades. The floating portion is approximately 12 km long and 6 km wide. Surface elevations and motion vectors were determined photogrammetrically for about 500 crevasses on the floating ice, and adjacent grounded ice, using aerial photographs obtained 2 weeks apart in July 1985. Surface strain rates were computed from a mesh of 399 quadrilateral elements having velocity measurements at each corner. It is shown that heavy crevassing of floating ice invalidates the assumptions of linear strain theory that (i) surface strain in the floating ice is homogeneous in both space and time, (ii) the squares and products of strain components are nil, and (iii) first- and second-order rotation components are small compared to strain components. Therefore, strain rates and rotation rates were also computed using non-linear strain theory. The percentage difference between computed linear and non-linear second invariants of strain rate per element were greatest (mostly in the range 40-70%) where crevassing is greatest. Isopleths of strain rate parallel and transverse to flow and elevation isopleths relate crevassing to known and inferred pinning points.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE Assessment of the cerebral blood flow (CBF) is crucial in the evaluation of patients with steno-occlusive diseases of the arteries supplying the brain for prediction of stroke risk. Quantitative phase contrast magnetic resonance angiography (PC-MRA) can be utilised for noninvasive quantification of CBF. The aim of this study was to validate in-vivo PC-MRA data by comparing them with colour-coded duplex (CCD) sonography in patients with cerebrovascular disease. METHODS AND MATERIALS We examined 24 consecutive patients (mean age 63 years) with stenosis of arteries supplying the brain using PC-MRA and CCD. Velocities were measured in a total of 209 stenotic and healthy arterial segments (110 extra- and 99 intracranial). RESULTS Moderate to good correlation of velocity measurements between both techniques was observed in all six extracranial and five out of seven intracranial segments (p <0.05). Velocities measured with CCD sonography were generally higher than those obtained by PC-MRA. Reversal of flow direction was detected consistently with both methods. CONCLUSION PC-MRA represents a robust, standardised magnetic resonance imaging technique for blood flow measurements within a reasonable acquisition time, potentially evolving as valuable work-up tool for more precise patient stratification for revascularisation therapy. PC-MRA overcomes relevant weaknesses of CCD in being not operator-dependent and not relying on a bone window to assess the intracranial arteries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We update the TrES-4 system parameters using high-precision HARPS-N radial-velocity measurements and new photometric light curves. A combined spectroscopic and photometric analysis allows us to determine a spectroscopic orbit with a semi-amplitude K = 51 +/- 3 ms(-1). The derived mass of TrES-4b is found to be M-p = 0.49 +/- 0.04 M-Jup, significantly lower than previously reported. Combined with the large radius (R-p = 1.84(-0.09)(+0.08) R-Jup) inferred from our analysis, TrES-4b becomes the transiting hot Jupiter with the second-lowest density known. We discuss several scenarios to explain the puzzling discrepancy in the mass of TrES-4b in the context of the exotic class of highly inflated transiting giant planets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This is the seventeenth of a series of symposia devoted to talks by students about their biochemical engineering research. The first, third, fifth, ninth, twelfth, and sixteenth were at Kansas State University, the second and fourth were at the University of Nebraska-Lincoln, the sixth was in Kansas City and was hosted by Iowa State University, the seventh, tenth, thirteenth, and seventeenth were at Iowa State University, the eighth and fourteenth were at the University of Missouri–Columbia, and the eleventh and fifteenth were at Colorado State University. Next year's symposium will be at the University of Colorado. Symposium proceedings are edited by faculty of the host institution. Because final publication usually takes place elsewhere, papers here are brief, and often cover work in progress. ContentsThe Effect of Polymer Dosage Conditions on the Properties of ProteinPolyelectrolyte Precipitates, K. H. Clark and C. E. Glatz, Iowa State University An Immobilized Enzyme Reactor/Separator for the Hydrolysis of Casein by Subtilisin Carlsberg, A. J. Bream, R. A. Yoshisato, and G. R. Carmichael, University of Iowa Cell Density Measurements in Hollow Fiber Bioreactors, Thomas Blute, Colorado State University The Hydrodynamics in an Air-Lift Reactor, Peter Sohn, George Y. Preckshot, and Rakesh K. Bajpai, University of Missouri–Columbia Local Liquid Velocity Measurements in a Split Cylinder Airlift Column, G. Travis Jones, Kansas State University Fluidized Bed Solid Substrate Trichoderma reesei Fermentation, S. Adisasmito, H. N. Karim, and R. P. Tengerdy, Colorado State University The Effect of 2,4-D Concentration on the Growth of Streptanthus tortuosis Cells in Shake Flask and Air-Lift Permenter Culture, I. C. Kong, R. D. Sjolund, and R. A. Yoshisato, University of Iowa Protein Engineering of Aspergillus niger Glucoamylase, Michael R. Sierks, Iowa State University Structured Kinetic Modeling of Hybidoma Growth and Monoclonal Antibody Production in Suspension Cultures, Brian C. Batt and Dhinakar S. Kampala, University of Colorado Modelling and Control of a Zymomonas mobilis Fermentation, John F. Kramer, M. N. Karim, and J. Linden, Colorado State University Modeling of Brettanomyces clausenii Fermentation on Mixtures of Glucose and Cellobiose, Max T. Bynum and Dhinakar S. Kampala, University of Colorado, Karel Grohmann and Charles E. Yyman, Solar Energy Research Institute Master Equation Modeling and Monte Carlo Simulation of Predator-Prey Interactions, R. 0. Fox, Y. Y. Huang, and L. T. Fan, Kansas State University Kinetics and Equilibria of Condensation Reactions Between Two Different Monosaccharides Catalyzed by Aspergillus niger Glucoamylase, Sabine Pestlin, Iowa State University Biodegradation of Metalworking Fluids, S. M. Lee, Ayush Gupta, L. E. Erickson, and L. T. Fan, Kansas State University Redox Potential, Toxicity and Oscillations in Solvent Fermentations, Kim Joong, Rakesh Bajpai, and Eugene L. Iannotti, University of Missouri–Columbia Using Structured Kinetic Models for Analyzing Instability in Recombinant Bacterial Cultures, William E. Bentley and Dhinakar S. Kompala, University of Colorado

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flemish Pass, located at the western subpolar margin, is a passage (sill depth 1200 m) that is constrained by the Grand Banks and the underwater plateau Flemish Cap. In addition to the Deep Western Boundary Current (DWBC) pathway offshore of Flemish Cap, Flemish Pass represents another southward transport pathway for two modes of Labrador Sea Water (LSW), the lightest component of North Atlantic Deep Water carried with the DWBC. This pathway avoids potential stirring regions east of Flemish Cap and deflection into the interior North Atlantic. Ship-based velocity measurements between 2009 and 2013 at 47°N in Flemish Pass and in the DWBC east of Flemish Cap revealed a considerable southward transport of Upper LSW through Flemish Pass (15-27%, -1.0 to -1.5 Sv). About 98% of the denser Deep LSW were carried around Flemish Cap as Flemish Pass is too shallow for considerable transport of Deep LSW. Hydrographic time series from ship-based measurements show a significant warming of 0.3°C/decade and a salinification of 0.03/decade of the Upper LSW in Flemish Pass between 1993 and 2013. Almost identical trends were found for the evolution in the Labrador Sea and in the DWBC east of Flemish Cap. This indicates that the long-term hydrographic variability of Upper LSW in Flemish Pass as well as in the DWBC at 47°N is dominated by changes in the Labrador Sea, which are advected southward. Fifty years of numerical ocean model simulations in Flemish Pass suggest that these trends are part of a multidecadal cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hess Rise, a major structural feature in the northern Pacific, is one of several oceanic plateaus which apparently possess anomalous seismic structures (Sutton et al., 1971). Hence, Laboratory measurements of compressional- and shear-wave velocities in rocks from oceanic plateau regions are of considerable interest. Several questions come to mind: (1) Are compressional - wave velocities of volcanic rocks from oceanic plateaus similar to basalts of equivalent age from normal oceanic crust? (2) Do velocity-density relations for plateau rocks fit the well-established trends for Layer 2 basalts? (3) How do Poisson's ratios, determined from compressional- and shear-wave velocities, of oceanic plateau rocks compare with those of normal sea-floor basalts? To answer these questions, we have selected for velocity measurements five volcanic samples from different depths from Hole 465A, on southern Hess Rise. It is particularly significant that all the rocks are vesicular and have been highly altered, which significantly affects their elastic properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seismic velocities have been measured at confining pressures of 100 MPa and 600 MPa for sheeted dike samples recovered during Ocean Drilling Program Legs 137 and 140. The compressional- and shear-wave velocities show an increase with depth at Hole 504B, which is in sharp contrast to the atmospheric pressure velocity measurements performed as part of the shipboard analyses. Rocks exposed to different types of alteration and fracture patterns show distinct changes in their physical properties. The seismic reflectors observed on the vertical seismic profile (VSP) experiment performed during Leg 111 may have been caused by low velocity zones resulting from alteration. The amount of fracturing and hydrothermal alteration in several zones also may have contributed to the acoustic impedance contrast necessary to produce the E5 reflector. Poisson's ratios calculated from laboratory velocity measurements show several low values at depths ranging from 1600 mbsf to 2000 mbsf, which tends to follow similar trends obtained from previous oceanic refraction experiments. A comparison of physical properties between samples recovered from Hole 504B and ophiolite studies in the Bay of Islands and Oman shows a good correlation with the Bay of Islands but significant differences from the measurements performed in the Oman complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shear-wave and compressional-wave velocities of 26 basalt samples collected at Site 504 during Deep Sea Drilling Project Legs 69 and 70 were measured at elevated confining pressures. The young basalts have higher velocities than average DSDP basalts, because of their lack of alteration. Measurements of sample porosity are combined with laboratory and in situ velocity measurements to yield estimates of total crustal porosity: 13% at the top of Layer 2, and very low porosity below a depth of 2.0 km.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During 2007 we launched a geodetic campaign on the Svalbard ice cap Vestfonna in order to estimate the velocity field of the ice cap. This was done within the frame of the IPY project KINNVIKA. We present here the velocity measurements derived from our campaigns 2007-2010 and compare the geodetic measurements against InSAR velocity fields from satellite platforms from 1995/96 and 2008. We find the spatial distribution of ice speeds from the InSAR is in good agreement within the uncertainty limits with our geodetic measurements. We observe no clear indication of seasonal ice speed differences, but we find a speed-up of the outlet glacier Franklinbreen between the InSAR campaigns, and speculate the outlet is having a surge phase.