923 resultados para Vasodilator Neurons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce "delay activity" between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our percept of visual stability across saccadic eye movements may be mediated by presaccadic remapping. Just before a saccade, neurons that remap become visually responsive at a future field (FF), which anticipates the saccade vector. Hence, the neurons use corollary discharge of saccades. Many of the neurons also decrease their response at the receptive field (RF). Presaccadic remapping occurs in several brain areas including the frontal eye field (FEF), which receives corollary discharge of saccades in its layer IV from a collicular-thalamic pathway. We studied, at two levels, the microcircuitry of remapping in the FEF. At the laminar level, we compared remapping between layers IV and V. At the cellular level, we compared remapping between different neuron types of layer IV. In the FEF in four monkeys (Macaca mulatta), we identified 27 layer IV neurons with orthodromic stimulation and 57 layer V neurons with antidromic stimulation from the superior colliculus. With the use of established criteria, we classified the layer IV neurons as putative excitatory (n = 11), putative inhibitory (n = 12), or ambiguous (n = 4). We found that just before a saccade, putative excitatory neurons increased their visual response at the RF, putative inhibitory neurons showed no change, and ambiguous neurons increased their visual response at the FF. None of the neurons showed presaccadic visual changes at both RF and FF. In contrast, neurons in layer V showed full remapping (at both the RF and FF). Our data suggest that elemental signals for remapping are distributed across neuron types in early cortical processing and combined in later stages of cortical microcircuitry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The image on the retina may move because the eyes move, or because something in the visual scene moves. The brain is not fooled by this ambiguity. Even as we make saccades, we are able to detect whether visual objects remain stable or move. Here we test whether this ability to assess visual stability across saccades is present at the single-neuron level in the frontal eye field (FEF), an area that receives both visual input and information about imminent saccades. Our hypothesis was that neurons in the FEF report whether a visual stimulus remains stable or moves as a saccade is made. Monkeys made saccades in the presence of a visual stimulus outside of the receptive field. In some trials, the stimulus remained stable, but in other trials, it moved during the saccade. In every trial, the stimulus occupied the center of the receptive field after the saccade, thus evoking a reafferent visual response. We found that many FEF neurons signaled, in the strength and timing of their reafferent response, whether the stimulus had remained stable or moved. Reafferent responses were tuned for the amount of stimulus translation, and, in accordance with human psychophysics, tuning was better (more prevalent, stronger, and quicker) for stimuli that moved perpendicular, rather than parallel, to the saccade. Tuning was sometimes present as well for nonspatial transaccadic changes (in color, size, or both). Our results indicate that FEF neurons evaluate visual stability during saccades and may be general purpose detectors of transaccadic visual change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 The Authors. Synapse elimination occurs in development, plasticity, and disease. Although the importance of synapse elimination has been documented in many studies, the molecular mechanisms underlying this process are unclear. Here, using the development of C. elegans RME neurons as a model, we have uncovered a function for the apoptosis pathway in synapse elimination. We find that the conserved apoptotic cell death (CED) pathway and axonal mitochondria are required for the elimination of transiently formed clusters of presynaptic components in RME neurons. This function of the CED pathway involves the activation of the actin-filament-severing protein, GSNL-1. Furthermore, we show that caspase CED-3 cleaves GSNL-1 at a conserved C-terminal region and that the cleaved active form of GSNL-1 promotes its actin-severing ability. Our data suggest that activation of the CED pathway contributes to selective elimination of synapses through disassembly of the actin filament network. Meng et al. find that activation of the cell death pathway in C. elegans neurons contributes to selective elimination of synapses through disassembly of the actin filament network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyramidal neurons (PyNs) in ‘higher’ brain are highly susceptible to acute stroke injury yet ‘lower’ brain regions better survive global ischemia, presumably because of better residual blood flow. Here we show that projection neurons in ‘lower’ brain regions of hypothalamus and brainstem intrinsically resist acute stroke-like injury independent of blood flow in the brain slice. In contrast `higher` projection neurons in neocortex, hippocampus, striatum and thalamus are highly susceptible. In live brain slices from rat deprived of oxygen and glucose (OGD), we imaged anoxic depolarization (AD) as it propagates through these regions. AD, the initial electrophysiological event of stroke, is a depolarizing front that drains residual energy in compromised gray matter. The extent of AD reliably determines ensuing damage in higher brain, but using whole-cell recordings we found that all CNS neurons do not generate a robust AD. Higher neurons generate strong AD and show no functional recovery in contrast to neurons in hypothalamus and brainstem that generate a weak and gradual AD. Most dramatically, lower neurons recover their membrane potential, input resistance and spike amplitude when oxygen and glucose is restored, while higher neurons do not. Following OGD, new recordings could be acquired in all lower (but not higher) brain regions, with some neurons even withstanding multiple OGD exposure. Two-photon laser scanning microscopy confirmed neuroprotection in lower, but not higher gray matter. Specifically pyramidal neurons swell and lose their dendritic spines post-OGD, whereas neurons in hypothalamus and brainstem display no such injury. Exposure to the Na+/K+ ATPase inhibitor ouabain (100 μM), induces depolarization similar to OGD in all cell types tested. Moreover, elevated [K+]o evokes spreading depression (SD), a milder version of AD, in higher brain but not hypothalamus or brainstem so weak AD correlates with the inability to generate SD. In summary, overriding the Na+/K+ pump using OGD, ouabain or elevated [K+]o evokes steep and robust depolarization of higher gray matter. We show that this important regional difference can be largely accounted for by the intrinsic properties of the resident neurons and that Na+/K+ ATPase pump efficiency is a major determining factor generating strong or weak spreading depolarizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: In the current study we examined the location of interstitial cell of Cajal (ICC)-like cells in the guinea pig bladder wall and studied their structural interactions with nerves and smooth muscle cells. MATERIALS AND METHODS: Whole mount samples and cryosections of bladder tissue were labeled with primary and fluorescent secondary antibodies, and imaged using confocal and multiphoton microscopy. RESULTS: Kit positive ICC-like cells were located below the urothelium, in the lamina propria region and throughout the detrusor. In the suburothelium they had a stellate morphology and appeared to network. They made connections with nerves, as shown by double labeling experiments with anti-kit and anti-protein gene product 9.5. A network of vimentin positive cells was also found, of which many but not all were kit positive. In the detrusor kit positive cells were most often seen at the edge of smooth muscle bundles. They were elongated with lateral branches, running in parallel with the bundles and closely associated with intramural nerves. Another population of kit positive cells was seen in the detrusor between muscle bundles. These cells had a more stellate-like morphology and made connections with each other. Kit positive cells were seen tracking nerve bundles and close to intramural ganglia. Vimentin positive cells were present in the detrusor, of which some were also kit positive. CONCLUSIONS: There are several populations of ICC-like cells throughout the guinea pig bladder wall. They differ in morphology and orientation but all make connections with intramural nerves and in the detrusor they are closely associated with smooth muscle cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cultured cerebellar granule neurons (CGN) are commonly used to assess neurotoxicity, but are routinely maintained in supraphysiological (25 mM) extracellular K+ concentrations [K+]o. We investigated the effect of potassium channel blockade on survival of CGN derived from Swiss-Webster mice in supraphysiological (25 mM) and physiological (5.6 mM) [K+]o. CGN were cultured for 5 days in 25 mM K+, then in 5.6 mM K+ or 25 mM K+ (control). Viability, assayed 24 h later by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) reduction and by lactate dehydrogenase (LDH) release, was ∼50% in 5.6 mM K+ versus 25 mM K+ (p < .001). Potassium channel blockers, 2 mM 4-aminopyridine (4-AP), 2 mM tetraethylammonium (TEA) or 1 mM Ba2+, individually afforded limited protection in 5.6 mM K+. However, survival in 5.6 mM K+ with a combination of 4-AP, TEA and Ba2+ was similar to survival in 25 mM K+ without blockers (p < .001 versus 5.6 mM K+ alone). CGN survival in 25 mM K+ was attenuated 25% by 2 μM nifedipine (p > .001), but nifedipine did not attenuate neuroprotection by K+ channel blockers. Together, these results suggest that the survival of CGN depends on the K+ permeability of the membrane rather than the activity of a particular type of K+ channel, and that the mechanism of neuroprotection by K+ channel blockers is different from that of elevated [K+]o.