981 resultados para Variance.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the risk premia embedded in the S&P 500 spot index and option markets. We use a long time-series of spot prices and a large panel of option prices to jointly estimate the diffusive stock risk premium, the price jump risk premium, the diffusive variance risk premium and the variance jump risk premium. The risk premia are statistically and economically significant and move over time. Investigating the economic drivers of the risk premia, we are able to explain up to 63 % of these variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the asymptotic distributions of the likelihood ratio for testing hypotheses of null variance components in linear mixed models derived by Stram and Lee [1994. Variance components testing in longitudinal mixed effects model. Biometrics 50, 1171-1177] are valid, their proof is based on the work of Self and Liang [1987. Asymptotic properties of maximum likelihood estimators and likelihood tests under nonstandard conditions. J. Amer. Statist. Assoc. 82, 605-610] which requires identically distributed random variables, an assumption not always valid in longitudinal data problems. We use the less restrictive results of Vu and Zhou [1997. Generalization of likelihood ratio tests under nonstandard conditions. Ann. Statist. 25, 897-916] to prove that the proposed mixture of chi-squared distributions is the actual asymptotic distribution of such likelihood ratios used as test statistics for null variance components in models with one or two random effects. We also consider a limited simulation study to evaluate the appropriateness of the asymptotic distribution of such likelihood ratios in moderately sized samples. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic improvement in litter size in pigs has been substantial during the last 10-15 years. The number of teats on the sow must increase as well to meet the needs of the piglets, because each piglet needs access to its own teat. We applied a genetic heterogeneity model on teat numberin sows, and estimated medium-high heritability for teat number (0.5), but low heritability for residual variance (0.05), indicating that selection for reduced variance might have very limited effect. A numerically positive correlation (0.8) between additive genetic breeding values for mean and for variance was found, but because of the low heritability for residual variance, the variance will increase very slowly with the mean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision.  Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes.  The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods: We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results: Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion: The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Canalization is defined as the stability of a genotype against minor variations in both environment and genetics. Genetic variation in degree of canalization causes heterogeneity of within-family variance. The aims of this study are twofold: (1) quantify genetic heterogeneity of (within-family) residual variance in Atlantic salmon and (2) test whether the observed heterogeneity of (within-family) residual variance can be explained by simple scaling effects. RESULTS: Analysis of body weight in Atlantic salmon using a double hierarchical generalized linear model (DHGLM) revealed substantial heterogeneity of within-family variance. The 95% prediction interval for within-family variance ranged from ~0.4 to 1.2 kg2, implying that the within-family variance of the most extreme high families is expected to be approximately three times larger than the extreme low families. For cross-sectional data, DHGLM with an animal mean sub-model resulted in severe bias, while a corresponding sire-dam model was appropriate. Heterogeneity of variance was not sensitive to Box-Cox transformations of phenotypes, which implies that heterogeneity of variance exists beyond what would be expected from simple scaling effects. CONCLUSIONS: Substantial heterogeneity of within-family variance was found for body weight in Atlantic salmon. A tendency towards higher variance with higher means (scaling effects) was observed, but heterogeneity of within-family variance existed beyond what could be explained by simple scaling effects. For cross-sectional data, using the animal mean sub-model in the DHGLM resulted in biased estimates of variance components, which differed substantially both from a standard linear mean animal model and a sire-dam DHGLM model. Although genetic differences in canalization were observed, selection for increased canalization is difficult, because there is limited individual information for the variance sub-model, especially when based on cross-sectional data. Furthermore, potential macro-environmental changes (diet, climatic region, etc.) may make genetic heterogeneity of variance a less stable trait over time and space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenotypic effect of a gene is normally described by the mean-difference between alternative genotypes. A gene may, however, also influence the phenotype by causing a difference in variance between genotypes. Here, we reanalyze a publicly available Arabidopsis thaliana dataset [1] and show that genetic variance heterogeneity appears to be as common as normal additive effects on a genomewide scale. The study also develops theory to estimate the contributions of variance differences between genotypes to the phenotypic variance, and this is used to show that individual loci can explain more than 20% of the phenotypic variance. Two well-studied systems, cellular control of molybdenum level by the ion-transporter MOT1 and flowering-time regulation by the FRI-FLC expression network, and a novel association for Leaf serration are used to illustrate the contribution of major individual loci, expression pathways, and gene-by-environment interactions to the genetic variance heterogeneity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho teve como objetivo principal avaliar a importância da inclusão dos efeitos genético materno, comum de leitegada e de ambiente permanente no modelo de estimação de componentes de variância para a característica intervalo de parto em fêmeas suínas. Foram utilizados dados que consistiam de 1.013 observações de fêmeas Dalland (C-40), registradas em dois rebanhos. As estimativas dos componentes de variância foram realizadas pelo método da máxima verossimilhança restrita livre de derivadas. Foram testados oito modelos, que continham os efeitos fixos (grupos de contemporâneo e covariáveis) e os efeitos genético aditivo direto e residual, mas variavam quanto à inclusão dos efeitos aleatórios genético materno, ambiental comum de leitegada e ambiental permanente. O teste da razão de verossimilhança (LR) indicou a não necessidade da inclusão desses efeitos no modelo. No entanto observou-se que o efeito ambiental permanente causou mudança nas estimativas de herdabilidade, que variaram de 0,00 a 0,03. Conclui-se que os valores de herdabilidade obtidos indicam que esta característica não apresentaria ganho genético como resposta à seleção. O efeito ambiental comum de leitegada e o genético materno não apresentaram influência sobre esta característica. Já o ambiental permanente, mesmo sem ter sido significativo o seu efeito pelo LR, deve ser considerado nos modelos genéticos para essa característica, pois sua presença causou mudança nas estimativas da variância genética aditiva.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we extend the use of the variance dispersion graph (VDG) to experiments in which the response surface (RS) design must be blocked. Through several examples we evaluate the prediction performances of RS designs in non-orthogonal block designs compared with the equivalent unblocked designs and orthogonally blocked designs. These examples illustrate that good prediction performance of designs in small blocks can be expected in practice. Most importantly, we show that the allocation of the treatment set to blocks can seriously affect the prediction properties of designs; thus, much care is needed in performing this allocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com este trabalho objetivou-se determinar parâmetros genéticos para peso corporal de perdizes em cativeiro. Foram utilizados modelos de regressão aleatória na análise dos dados considerando os efeitos genéticos aditivos diretos (AD) e de ambiente permanente de animal (AP) como aleatórios. As variâncias residuais foram modeladas utilizando-se funções de variância de ordem 5. A curva média da população foi ajustada por polinômios ortogonais de Legendre de ordem 6. Os efeitos genéticos aditivos diretos e de ambiente permanente de animal foram modelados utilizando-se polinômios de Legendre de segunda a nona ordem. Os melhores resultados foram obtidos pelos modelos de ordem 6 de ajuste para os efeitos genéticos aditivos diretos e de ordem 3 para os de ambiente permanente pelo Critério de Informação de Akaike e ordem 3 para ambos os efeitos pelos Critério de Informação Bayesiano de Schwartz e Teste de Razão de Verossimilhança. As herdabilidades estimadas variaram de 0,02 a 0,57. O primeiro autovalor respondeu por 94 e 90% da variação decorrente de efeitos aditivos diretos e de ambiente permanente, respectivamente. A seleção de perdizes para peso corporal é mais efetiva a partir de 112 dias de idade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, an (X) over bar chart is used to control the process mean and an R chart is used to control the process variance. However, these charts are not sensitive to small changes in the process parameters. The adaptive ($) over bar and R charts might be considered if the aim is to detect small disturbances. Due to the statistical character of the joint (X) over bar and R charts with fixed or adaptive parameters, they are not reliable in identifing the nature of the disturbance, whether it is one that shifts the process mean, increases the process variance, or leads to a combination of both effects. In practice, the speed with which the control charts detect process changes may be more important than their ability in identifying the nature of the change. Under these circumstances, it seems to be advantageous to consider a single chart, based on only one statistic, to simultaneously monitor the process mean and variance. In this paper, we propose the adaptive non-central chi-square statistic chart. This new chart is more effective than the adaptive (X) over bar and R charts in detecting disturbances that shift the process mean, increase the process variance, or lead to a combination of both effects. Copyright (c) 2006 John Wiley & Sons, Ltd.