988 resultados para Vapour pressure
Resumo:
In the first part of the paper steady two-phase flow predictions have been performed for the last stage of a model steam turbine to examine the influence of drag between condensed fog droplets and the continuous vapour phase. In general, droplets due to homogeneous condensation are small and thus kinematic relaxation provides only a minor contribution to the wetness losses. Different droplet size distributions have been investigated to estimate at which size inter-phase friction becomes more important. The second part of the paper deals with the deposition of fog droplets on stator blades. Results from several references are repeated to introduce the two main deposition mechanisms which are inertia and turbulent diffusion. Extensive postprocessing routines have been programmed to calculate droplet deposition due to these effects for a last stage stator blade in three-dimensions. In principle the method to determine droplet deposition by turbulent diffusion equates to that of Yau and Young [1] and the advantages and disadvantages of this relatively simple method are discussed. The investigation includes the influence of different droplet sizes on droplet deposition rates and shows that for small fog droplets turbulent diffusion is the main deposition mechanism. If the droplets size is increased inertial effects become more and more important and for droplets around 1 μm inertial deposition dominates. Assuming realistic droplet sizes the overall deposition equates to about 1% to 3% of the incoming wetness for the investigated guide vane at normal operating conditions. Copyright © 2013 by Solar Turbines Incorporated.
Resumo:
The complex three-dimensional two-phase flow in a low pressure steam turbine is investigated with comprehensive numerical flow simulations. In addition to the condensation process, which already takes place in the last stages of steam turbines, the numerical flow model is enhanced to consider the drag forces between the droplets and the vapour phase. The present paper shows the differences in the flow path of the phases and investigates the effect of an increasing droplet diameter. For the flow simulations a performance cluster is used because of the high effort for such multi-momentum two-phase flow calculations. In steam turbines the deposition of small water droplets on the stator blades or on parts of the casing is responsible for the formation of large coarse water droplets and these may cause additional dissipation as well as damage due to blade erosion. A method is presented that uses detailed CFD data to predict droplet deposition on turbine stator blades. This simulation method to detect regions of droplet deposition can help to improve the design of water removal devices. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
ZnMgO hexagonal-nanotowers/films grown on m-plane sapphire substrates were successfully synthesized using a vertical low-pressure metal organic chemical vapour deposition system. The structural and optical properties of the as-obtained products were characterized using various techniques. They were grown along the non-polar [1 0 (1) over bar 0] direction and possessed wurtzite structure. The ZnMgO hexagonal-nanotowers were about 200 nm in diameter at the bottom and 120 nm in length. Photoluminescence and Raman spectra show that the products have good crystal quality with few oxygen vacancies. With Mg incorporation, multiple-phonon scattering becomes weak and broad, and the intensities of all observed vibrational modes decrease. The ultraviolet near band edge emission shows a clear blueshift (as much as 100 meV) and broadening compared with that of pure ZnO products.
Resumo:
A novel integration technique has been developed using band-gap energy control of InGaAsP/InGaAsP multi-quantum-well (MQW) structures during simultaneous ultra-low-pressure (22 mbar) selective-area-growth (SAG) process in metal-organic chemical vapour deposition. A fundamental study of the controllability of band gap energy by the SAG method is performed. A large band-gap photoluminescence wavelength shift of 83nm is obtained with a small mask width variation (0-30 mu m). The method is then applied to fabricate an MQW distributed-feedback laser monolithically integrated with an electroabsorption modulator. The experimental results exhibit superior device characteristics with low threshold of 19 mA, over 24 dB extinction ratio when coupled into a single mode fibre. More than 10GHz modulation bandwidth is also achieved, which demonstrates that the ultra-low-pressure SAG technique is a promising approach for high-speed transmission photonic integrated circuits.
Resumo:
A high-Al-content AlGaN epilayer is grown on a low-temperature-deposited AlN buffer on (0001) sapphire by low pressure metalorganic chemical vapour deposition. The dependence of surface roughness, tilted mosaicity, and twisted mosaicity on the conditions of the AlGaN epilayer deposition is evaluated. An AlGaN epilayer with favourable surface morphology and crystal quality is deposited on a 20 nm low-temperature-deposited AlN buffer at a low V/III flow ratio of 783 and at a low reactor pressure of 100 Torr, and the adduct reaction between trimethylaluminium and NH3 is considered.
Resumo:
Narrow stripe selective growth of oxide-free InGaAlAs/InGaAlAs multiple quantum wells (MQWs) has been successfully performed on patterned InP substrates by ultra-low pressure MOVPE. Flat and clear interfaces were obtained for the narrow stripe selectively grown MQWs under optimized growth conditions. These selectively grown MQWs were covered by specific InP layers, which can keep the MQWs from being oxidized during the fabrication of the devices. The characteristics of selectively grown MQWs were strongly dependent on the mask stripe width. In particular, a PL peak wavelength shift of 73 nm, a PL intensity of more than 57% and a PL FWHM of less than 102 meV were observed simultaneously with a small mask stripe width varying from 0 to 40 mu m. The results were explained by considering the migration effect from the masked region (MMR) and the lateral vapour diffusion effect (LVD).
Resumo:
We have investigated the photoluminescence mapping characteristics of semi-insulating (SI) InP wafers obtained by annealing in iron phosphide ambience (FeP2-annealed). Compared with as-grown Fe-doped and undoped SI InP wafers prepared by annealing in pure phosphorus vapour (P-annealed), the FeP2-annealed ST InP wafer has been found to exhibit a better photoluminescence uniformity. Radial Hall measurements also show that there is a better resistivity uniformity on the FeP2-annealed Sl InP wafer. When comparing the distribution of deep levels between the annealed wafers measured by optical transient Current spectroscopy, we find that the incorporation of iron atoms into the Sl InP Suppresses the formation of a few defects. The correlation observed in this study implies that annealing in iron phosphorus ambience makes Fe atoms diffuse uniformly and occupy the indium site in the Sl InP lattice. As it stands, we believe that annealing undoped conductive InP in iron phosphide vapour is an effective means to obtain semi-insulating InP wafers with superior uniformity.
Resumo:
GexSi1-x epilayers were grown at 700-900 degrees C by atmospheric pressure chemical vapour deposition. GexSi1-x, Si and Ge growth rates as functions of GeH4 flow are considered separately to investigate how the growth of the epilayers is enhanced. Arrhenius plots of Si and Ge incorporation in the GexSi1-x growth show the activation energies associated with the growth rates are about 1.2 eV for silicon and 0.4 eV for germanium, indicating that Si growth is limited by surface kinetics and Ge growth is limited by mass transport. A model based on this idea is proposed and used to simulate the growth of GexSi1-x. The calculation and experiment are in good agreement. Growth rate and film composition increase monotonically with growth pressure; both observations are explained by the model.
Resumo:
Low pressure metalorganic chemical vapour deposition (LP-MOCVD) growth and characteristics of InAssb on (100) Gasb substrates are investigated. Mirror-like surfaces with a minimum lattice mismatch are obtained. The samples are studied by photoluminescence spectra, and the output is 3.17 mu m in wavelength. The surface of InAssb epilayer shows that its morphological feature is dependent on buffer layer. With an InAs buffer layer used, the best surface is obtained. The InAssb film shows to be of n-type conduction with an electron concentration of 8.52 x 10(16) cm(-3).
Resumo:
A novel integration technique has been developed using band-gap energy control of InGaAsP/InGaAsP multiquantum-well (MQW) structures during simultaneous ultra-low-pressure (22 mbar) selective-area-growth (SAG) process in metal-organic chemical vapour deposition. A fundamental study of the controllability of band gap energy by the SAG method is performed. A large band-gap photoluminescence wavelength shift of 83nm is obtained with a small mask width variation (0-30μm). The method is then applied to fabricate an MQW distributed-feedback laser monolithically integrated with an electroabsorption modulator. The experimental results exhibit superior device characteristics with low threshold of 19mA, over 24 dB extinction ratio when coupled into a single mode fibre. More than 10 GHz modulation bandwidth is also achieved, which demonstrates that the ultra-low-pressure SAG technique is a promising approach for high-speed transmission photonic integrated circuits.
Resumo:
Vertically aligned ZnO nanowires (NWs) with a length of 1.5-10 mu m and a mean diameter of ca. 150 nm were grown by chemical vapour deposition onto a c-oriented ZnO seed layer which was deposited by atomic layer deposition on Si substrates. The substrates were then spin-coated with an ethanol solution containing Pd nanoparticles with an average size of 2.7 and 4.5 nm. A homogeneous distribution of the Pd nanoparticles on ZnO NWs has been obtained using both Pd particle series. The catalytic activity of the ZnO NWs and Pd/ZnO NWs catalysts was measured in the semihydrogenation of 2-methyl-3-butyn-2-ol at 303-343 K and a pressure of 2-10 bar. The effect of the solvent used on the catalytic performance of the Pd/ZnO NWs catalyst was studied. The Pd/ZnO catalysts showed alkene selectivity of up to 95% at an alkyne conversion of 99%. A kinetic model is proposed to explain the activity and selectivity of the ZnO support and Pd/ZnO catalysts.
Resumo:
A hydrogen peroxide vapour indicator is described comprising a triarylmethane dye, lissamine green (LG), dissolved in a polymer, polyvinyl alcohol (PVA). The indicator is green/blue in the absence of hydrogen peroxide vapour but is rapidly bleached in the presence of hydrogen peroxide vapour. The kinetics of LG bleaching appear approximately first order with respect [LG] and the concentration of H2O2, which, in turn, is proportional to the partial pressure of H2O2. However, the kinetics also appear to depend directly upon the reciprocal of the film thickness, implying some dependence upon the diffusion of the H2O2 vapour through the indicator film. Like most other H2O2 indicator films (such as starch-iodide paper), the LG/PVA indicator is not particularly selective and responds to most other volatile strong oxidising agents, such as ozone and chlorine. However, it is rapid in response (
Resumo:
Abstract The current study reports original vapour-liquid equilibrium (VLE) for the system {CO2 (1) + 1-chloropropane (2)}. The measurements have been performed over the entire pressure-composition range for the (303.15, 313.15 and 328.15) K isotherms. The values obtained have been used for comparison of four predictive approaches, namely the equation of state (EoS) of Peng and Robinson (PR), the Soave modification of Benedict–Webb–Rubin (SBWR) EoS, the Critical Point-based Revised Perturbed-Chain Association Fluid Theory (CP-PC-SAFT) EoS, and the Conductor-like Screening Model for Real Solvents (COSMO-RS). It has been demonstrated that the three EoS under consideration yield similar and qualitatively accurate predictions of VLE, which is not the case for the COSMO-RS model examined. Although CP-PC-SAFT EoS exhibits only minor superiority in comparison with PR and SBWR EoS in predicting VLE in the system under consideration, its relative complexity can be justified when taking into account the entire thermodynamic phase space and, in particular, considering the liquid densities and sound velocities over a wider pressure-volume-temperature range.
Resumo:
Thermochromic materials change optical properties, such as transmittance or reflectance, with a variation in temperature. An ideal intelligent (smart) material will allow solar radiation in through a window in cold conditions, but reflect that radiation in warmer conditions. The variation in the properties is often associated with a phase change, which takes place at a definite temperature, and is normally reversible. Such materials are usually applied to window glass as thin films. This thesis presents the work on the development of thermochromic vanadium (IV) oxide (VO2) thin films – both undoped and doped with tungsten, niobium and gold nanoparticles – which could be employed as solar control coatings. The films were deposited using Chemical Vapour Deposition (CVD), using improved Atmospheric Pressure (APCVD), novel Aerosol Assisted (AACVD) and novel hybrid AP/AACVD techniques. The effects of dopants on the metalto- semiconductor transition temperature and transmittance/reflectance characteristics were also investigated. This work significantly increased the understanding of the mechanisms behind thermochromic behaviour, and resulted in thermochromic materials based on VO2 with greatly improved properties.