988 resultados para Vaccine design
Resumo:
PURPOSE: Chemokines are implicated in T-cell trafficking. We mapped the chemokine landscape in advanced stage ovarian cancer and characterized the expression of cognate receptors in autologous dendritic cell (DC)-vaccine primed T cells in the context of cell-based immunotherapy. EXPERIMENTAL DESIGN: The expression of all known human chemokines in patients with primary ovarian cancer was analyzed on two independent microarray datasets and validated on tissue microarray. Peripheral blood T cells from five HLA-A2 patients with recurrent ovarian cancer, who previously received autologous tumor DC vaccine, underwent CD3/CD28 costimulation and expansion ex vivo. Tumor-specific T cells were identified by HER2/neu pentamer staining and were evaluated for the expression and functionality of chemokine receptors important for homing to ovarian cancer. RESULTS: The chemokine landscape of ovarian cancer is heterogeneous with high expression of known lymphocyte-recruiting chemokines (CCL2, CCL4, and CCL5) in tumors with intraepithelial T cells, whereas CXCL10, CXCL12, and CXCL16 are expressed quasi-universally, including in tumors lacking tumor-infiltrating T cells. DC-vaccine primed T cells were found to express the cognate receptors for the above chemokines. Ex vivo CD3/CD28 costimulation and expansion of vaccine-primed Tcells upregulated CXCR3 and CXCR4, and enhanced their migration toward universally expressed chemokines in ovarian cancer. CONCLUSIONS: DC-primed tumor-specific T cells are armed with the appropriate receptors to migrate toward universal ovarian cancer chemokines, and these receptors are further upregulated by ex vivo CD3/CD28 costimulation, which render T cells more fit for migrating toward these chemokines. Clin Cancer Res; 21(12); 2840-50. ©2015 AACR.
Resumo:
The partial efficacy reported in the RV144 HIV vaccine trial in 2009 has driven the HIV vaccine field to define correlates of risk associated with HIV-1 acquisition and connect these functionally to preventing HIV infection. Immunological correlates, mainly including CD4(+) T cell responses to the HIV envelope and Fc-mediated antibody effector function, have been connected to reduced acquisition. These immunological correlates place immunological and genetic pressure on the virus. Indeed, antibodies directed at conserved regions of the V1V2 loop and antibodies that mediate antibody-dependent cellular cytotoxicity to HIV envelope in the absence of inhibiting serum immunoglobulin A antibodies correlated with decreased HIV risk. More recently, researchers have expanded their search with nonhuman primate studies using vaccine regimens that differ from that used in RV144; these studies indicate that non-neutralizing antibodies are associated with protection from experimental lentivirus challenge as well. These immunological correlates have provided the basis for the design of a next generation of vaccine regimens to improve upon the qualitative and quantitative degree of magnitude of these immune responses on HIV acquisition.
Resumo:
Background: None of the HIV T-cell vaccine candidates that have reached advanced clinical testing have been able to induce protective T cell immunity. A major reason for these failures may have been suboptimal T cell immunogen designs. Methods: To overcome this problem, we used a novel immunogen design approach that is based on functional T cell response data from more than 1,000 HIV-1 clade B and C infected individuals and which aims to direct the T cell response to the most vulnerable sites of HIV-1. Results: Our approach identified 16 regions in Gag, Pol, Vif and Nef that were relatively conserved and predominantly targeted by individuals with reduced viral loads. These regions formed the basis of the HIVACAT T-cell Immunogen (HTI) sequence which is 529 amino acids in length, includes more than 50 optimally defined CD4+ and CD8+ T-cell epitopes restricted by a wide range of HLA class I and II molecules and covers viral sites where mutations led to a dramatic reduction in viral replicative fitness. In both, C57BL/6 mice and Indian rhesus macaques immunized with an HTI-expressing DNA plasmid (DNA.HTI) induced broad and balanced T-cell responses to several segments within Gag, Pol, and Vif. DNA.HTI induced robust CD4+ and CD8+ T cell responses that were increased by a booster vaccination using modified virus Ankara (MVA.HTI), expanding the DNA.HTI induced response to up to 3.2% IFN-γ T-cells in macaques. HTI-specific T cells showed a central and effector memory phenotype with a significant fraction of the IFN-γ+ CD8+ T cells being Granzyme B+ and able to degranulate (CD107a+). Conclusions: These data demonstrate the immunogenicity of a novel HIV-1 T cell vaccine concept that induced broadly balanced responses to vulnerable sites of HIV-1 while avoiding the induction of responses to potential decoy targets that may divert effective T-cell responses towards variable and less protective viral determinants.
Resumo:
Liposomes (lipid-based vesicles) have been widely studied as drug delivery systems due to their relative safety, their structural versatility concerning size, composition and bilayer fluidity, and their ability to incorporate almost any molecule regardless of its structure. Liposomes are successful in inducing potent in vivo immunity to incorporated antigens and are now being employed in numerous immunization procedures. This is a brief overview of the structural, biophysical and pharmacological properties of liposomes and of the current strategies in the design of liposomes as vaccine delivery systems.
Resumo:
The recombinant heat shock protein (18 kDa-hsp) from Mycobacterium leprae was studied as a T-epitope model for vaccine development. We present a structural analysis of the stability of recombinant 18 kDa-hsp during different processing steps. Circular dichroism and ELISA were used to monitor protein structure after thermal stress, lyophilization and chemical modification. We observed that the 18 kDa-hsp is extremely resistant to a wide range of temperatures (60% of activity is retained at 80ºC for 20 min). N-Acylation increased its ordered structure by 4% and decreased its ß-T1 structure by 2%. ELISA demonstrated that the native conformation of the 18 kDa-hsp was preserved after hydrophobic modification by acylation. The recombinant 18 kDa-hsp resists to a wide range of temperatures and chemical modifications without loss of its main characteristic, which is to be a source of T epitopes. This resistance is probably directly related to its lack of organization at the level of tertiary and secondary structures.
Resumo:
Objectives To determine the effect of human papillomavirus (HPV) quadrivalent vaccine on the risk of developing subsequent disease after an excisional procedure for cervical intraepithelial neoplasia or diagnosis of genital warts, vulvar intraepithelial neoplasia, or vaginal intraepithelial neoplasia. Design Retrospective analysis of data from two international, double blind, placebo controlled, randomised efficacy trials of quadrivalent HPV vaccine (protocol 013 (FUTURE I) and protocol 015 (FUTURE II)). Setting Primary care centres and university or hospital associated health centres in 24 countries and territories around the world. Participants Among 17 622 women aged 15–26 years who underwent 1:1 randomisation to vaccine or placebo, 2054 received cervical surgery or were diagnosed with genital warts, vulvar intraepithelial neoplasia, or vaginal intraepithelial neoplasia. Intervention Three doses of quadrivalent HPV vaccine or placebo at day 1, month 2, and month 6. Main outcome measures Incidence of HPV related disease from 60 days after treatment or diagnosis, expressed as the number of women with an end point per 100 person years at risk. Results A total of 587 vaccine and 763 placebo recipients underwent cervical surgery. The incidence of any subsequent HPV related disease was 6.6 and 12.2 in vaccine and placebo recipients respectively (46.2% reduction (95% confidence interval 22.5% to 63.2%) with vaccination). Vaccination was associated with a significant reduction in risk of any subsequent high grade disease of the cervix by 64.9% (20.1% to 86.3%). A total of 229 vaccine recipients and 475 placebo recipients were diagnosed with genital warts, vulvar intraepithelial neoplasia, or vaginal intraepithelial neoplasia, and the incidence of any subsequent HPV related disease was 20.1 and 31.0 in vaccine and placebo recipients respectively (35.2% reduction (13.8% to 51.8%)). Conclusions Previous vaccination with quadrivalent HPV vaccine among women who had surgical treatment for HPV related disease significantly reduced the incidence of subsequent HPV related disease, including high grade disease.
Resumo:
Objectives: To evaluate the prophylactic efficacy of the human papillomavirus (HPV) quadrivalent vaccine in preventing low grade cervical, vulvar, and vaginal intraepithelial neoplasias and anogenital warts (condyloma acuminata). Design: Data from two international, double blind, placebo controlled, randomised efficacy trials of quadrivalent HPV vaccine (protocol 013 (FUTURE I) and protocol 015 (FUTURE II)). The trials were to be 4 years in length, and the results reported are from final study data of 42 months' follow-up. Setting: Primary care centres and university or hospital associated health centres in 24 countries and territories around the world. Participants: 17 622 women aged 16-26 years enrolled between December 2001 and May 2003. Major exclusion criteria were lifetime number of sexual partners (>4), history of abnormal cervical smear test results, and pregnancy. Intervention: Three doses of quadrivalent HPV vaccine (for serotypes 6, 11, 16, and 18) or placebo at day 1, month 2, and month 6. Main outcome measures: Vaccine efficacy against cervical, vulvar, and vaginal intraepithelial neoplasia grade I and condyloma in a per protocol susceptible population that included subjects who received all three vaccine doses, tested negative for the relevant vaccine HPV types at day 1 and remained negative through month 7, and had no major protocol violations. Intention to treat, generally HPV naive, and unrestricted susceptible populations were also studied. Results: In the per protocol susceptible population, vaccine efficacy against lesions related to the HPV types in the vaccine was 96% for cervical intraepithelial neoplasia grade I (95% confidence interval 91% to 98%), 100% for both vulvar and vaginal intraepithelial neoplasia grade I (95% CIs 74% to 100%, 64% to 100% respectively), and 99% for condyloma (96% to 100%). Vaccine efficacy against any lesion (regardless of HPV type) in the generally naive population was 30% (17% to 41%), 75% (22% to 94%), and 48% (10% to 71%) for cervical, vulvar, and vaginal intraepithelial neoplasia grade I, respectively, and 83% (74% to 89%) for condyloma. Conclusions: Quadrivalent HPV vaccine provided sustained protection against low grade lesions attributable to vaccine HPV types (6, 11, 16, and 18) and a substantial reduction in the burden of these diseases through 42 months of follow-up. Trial registrations: NCT00092521 and NCT00092534.
Resumo:
OBJECTIVES: To test the hypothesis that a micronutrient supplement can improve seroconversion after influenza immunization in older institutionalized people. DESIGN: Randomized, double-blind, placebo-controlled study. SETTING: Nursing and residential homes in Liverpool, United Kingdom. PARTICIPANTS: One hundred sixty-four residents aged 60 and older from 31 homes were initially randomized; of these, 119 (72.6%) completed the study. INTERVENTION: Participants were randomized to receive a micronutrient supplement providing the reference nutrient intake for all vitamins and trace elements or identical placebo. Tablets were taken over an 8-week period during September and October 2000; influenza vaccine was administered 4 weeks after their commencement. MEASUREMENTS: The hemagglutination-inhibiting antibody response as defined by a fourfold or greater titer rise over 4 weeks and assessed separately for each of the three antigens contained in the 2000/2001 influenza vaccine (A/New Caledonia/20/99 (H1N1), A/Moscow/10/99 (H3N2), B/Beijing/184/93 (B)). RESULTS: Despite a significant increase in serum concentrations of vitamins A, C, D-3, E, folate, and selenium in the supplemented group, there was no significant difference between groups (supplemented vs placebo, respectively) in the proportion of participants seroconverting to H1N1 (41% vs 49%, P=.374), H3N2 (49% vs 58%, P=.343), or B (41% vs 40%, P=.944). CONCLUSION: A micronutrient supplement providing the reference nutrient intake administered over 8 weeks had no beneficial effect on antibody response to influenza vaccine in older people living in long-term care.
Resumo:
Vaccine-based immunotherapy can increase the overall survival of patients with advanced prostate cancer. However, the efficacy of vaccine-elicited anticancer immune responses is heavily influenced by the physical, nutritional, and psychological status of the patient. Given their importance, these parameters should be carefully considered for the design of future clinical trials testing this immunotherapeutic paradigm in prostate cancer patients.
Resumo:
Vaccines are considered by many to be one of the most successful medical interventions against infectious diseases. But many significant obstacles remain, such as optimizing DNA vaccines for use in humans or large animals. The amount of doses, route and easiness of administration are also important points to consider in the design of new DNA vaccines. Heterologous prime-boost regimens probably represent the best hope for an improved DNA vaccine strategy. In this study, we have shown that heterologous prime-boost vaccination against tuberculosis (TB) using intranasal BCG priming/DNA-HSP65 boosting (BCGin/DNA) provided significantly greater protection than that afforded by a single subcutaneous or intranasal dose of BCG. In addition, BCGin/DNA immunization was also more efficient in controlling bacterial loads than were the other prime-boost schedules evaluated or three doses of DNA-HSP65 as a naked DNA. The single dose of DNA-HSP65 booster enhanced the immunogenicity of a single subcutaneous BCG vaccination, as evidenced by the significantly higher serum levels of anti-Hsp65 IgG2a Th1-induced antibodies, as well as by the significantly greater production of IFN-γ by antigen-specific spleen cells. The BCG prime/DNA-HSP65 booster was also associated with better preservation of lung parenchyma.
Resumo:
Abstract Background A number of reports have demonstrated that rodents immunized with DNA vaccines can produce antibodies and cellular immune responses presenting a long-lasting protective immunity. These findings have attracted considerable interest in the field of DNA vaccination. We have previously described the prophylactic and therapeutic effects of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in a murine model of tuberculosis. As DNA vaccines are often less effective in humans, we aimed to find out how the DNA-HSP65 stimulates human immune responses. Methods To address this question, we analysed the activation of both human macrophages and dendritic cells (DCs) cultured with DNA-HSP65. Then, these cells stimulated with the DNA vaccine were evaluated regarding the expression of surface markers, cytokine production and microbicidal activity. Results It was observed that DCs and macrophages presented different ability to uptake DNA vaccine. Under DNA stimulation, macrophages, characterized as CD11b+/CD86+/HLA-DR+, produced high levels of TNF-alpha, IL-6 (pro-inflammatory cytokines), and IL-10 (anti-inflammatory cytokine). Besides, they also presented a microbicidal activity higher than that observed in DCs after infection with M. tuberculosis. On the other hand, DCs, characterized as CD11c+/CD86+/CD123-/BDCA-4+/IFN-alpha-, produced high levels of IL-12 and low levels of TNF-alpha, IL-6 and IL-10. Finally, the DNA-HSP65 vaccine was able to induce proliferation of peripheral blood lymphocytes. Conclusion Our data suggest that the immune response is differently activated by the DNA-HSP65 vaccine in humans. These findings provide important clues to the design of new strategies for using DNA vaccines in human immunotherapy.
Resumo:
Background Immunosuppressed individuals present serious morbidity and mortality from influenza, therefore it is important to understand the safety and immunogenicity of influenza vaccination among them. Methods This multicenter cohort study evaluated the immunogenicity and reactogenicity of an inactivated, monovalent, non-adjuvanted pandemic (H1N1) 2009 vaccine among the elderly, HIV-infected, rheumatoid arthritis (RA), cancer, kidney transplant, and juvenile idiopathic arthritis (JIA) patients. Participants were included during routine clinical visits, and vaccinated according to conventional influenza vaccination schedules. Antibody response was measured by the hemagglutination-inhibition assay, before and 21 days after vaccination. Results 319 patients with cancer, 260 with RA, 256 HIV-infected, 149 elderly individuals, 85 kidney transplant recipients, and 83 with JIA were included. The proportions of seroprotection, seroconversion, and the geometric mean titer ratios postvaccination were, respectively: 37.6%, 31.8%, and 3.2 among kidney transplant recipients, 61.5%, 53.1%, and 7.5 among RA patients, 63.1%, 55.7%, and 5.7 among the elderly, 59.0%, 54.7%, and 5.9 among HIV-infected patients, 52.4%, 49.2%, and 5.3 among cancer patients, 85.5%, 78.3%, and 16.5 among JIA patients. The vaccine was well tolerated, with no reported severe adverse events. Conclusions The vaccine was safe among all groups, with an acceptable immunogenicity among the elderly and JIA patients, however new vaccination strategies should be explored to improve the immune response of immunocompromised adult patients. (ClinicalTrials.gov, NCT01218685)
Resumo:
Hepatitis C virus (HCV) vaccine efficacy may crucially depend on immunogen length and coverage of viral sequence diversity. However, covering a considerable proportion of the circulating viral sequence variants would likely require long immunogens, which for the conserved portions of the viral genome, would contain unnecessarily redundant sequence information. In this study, we present the design and in vitro performance analysis of a novel "epitome" approach that compresses frequent immune targets of the cellular immune response against HCV into a shorter immunogen sequence. Compression of immunological information is achieved by partial overlapping shared sequence motifs between individual epitopes. At the same time, sequence diversity coverage is provided by taking advantage of emerging cross-reactivity patterns among epitope variants so that epitope variants associated with the broadest variant cross-recognition are preferentially included. The processing and presentation analysis of specific epitopes included in such a compressed, in vitro-expressed HCV epitome indicated effective processing of a majority of tested epitopes, although re-presentation of some epitopes may require refined sequence design. Together, the present study establishes the epitome approach as a potential powerful tool for vaccine immunogen design, especially suitable for the induction of cellular immune responses against highly variable pathogens.
Resumo:
PURPOSE Survivin is a member of the inhibitor-of-apoptosis family. Essential for tumor cell survival and overexpressed in most cancers, survivin is a promising target for anti-cancer immunotherapy. Immunogenicity has been demonstrated in multiple cancers. Nonetheless, few clinical trials have demonstrated survivin-vaccine-induced immune responses. EXPERIMENTAL DESIGN This phase I trial was conducted to test whether vaccine EMD640744, a cocktail of five HLA class I-binding survivin peptides in Montanide(®) ISA 51 VG, promotes anti-survivin T-cell responses in patients with solid cancers. The primary objective was to compare immunologic efficacy of EMD640744 at doses of 30, 100, and 300 μg. Secondary objectives included safety, tolerability, and clinical efficacy. RESULTS In total, 49 patients who received ≥2 EMD640744 injections with available baseline- and ≥1 post-vaccination samples [immunologic-diagnostic (ID)-intention-to-treat] were analyzed by ELISpot- and peptide/MHC-multimer staining, revealing vaccine-activated peptide-specific T-cell responses in 31 patients (63 %). This cohort included the per study protocol relevant ID population for the primary objective, i.e., T-cell responses by ELISpot in 17 weeks following first vaccination, as well as subjects who discontinued the study before week 17 but showed responses to the treatment. No dose-dependent effects were observed. In the majority of patients (61 %), anti-survivin responses were detected only after vaccination, providing evidence for de novo induction. Best overall tumor response was stable disease (28 %). EMD640744 was well tolerated; local injection-site reactions constituted the most frequent adverse event. CONCLUSIONS Vaccination with EMD640744 elicited T-cell responses against survivin peptides in the majority of patients, demonstrating the immunologic efficacy of EMD640744.
Resumo:
Group B Streptococcus (GBS) is a leading cause of life-threatening infection in neonates and young infants, pregnant women, and non-pregnant adults with underlying medical conditions. Immunization has theoretical potential to prevent significant morbidity and mortality from GBS disease. Alpha C protein (α C), found in 70% of non-type III capsule polysaccharide group B Streptococcus, elicits antibodies protective against α C-expressing strains in experimental animals and is an appealing carrier for a GBS conjugate vaccine. We determined whether natural exposure to α C elicits antibodies in women and if high maternal α C-specific serum antibody at delivery is associated with protection against neonatal disease. An ELISA was designed to measure α C-specific IgM and IgG in human sera. A case-control design (1:3 ratio) was used to match α C-expressing GBS colonized and non-colonized women by age and compare quantified serum α C-specific IgM and IgG. Sera also were analyzed from bacteremic neonates and their mothers and from women with invasive GBS disease. Antibody concentrations were compared using t-tests on log-transformed data. Geometric mean concentrations of α C-specific IgM and IgG were similar in sera from 58 α C strain colonized and 174 age-matched non-colonized women (IgG 245 and 313 ng/ml; IgM 257 and 229 ng/ml, respectively). Delivery sera from mothers of 42 neonates with GBS α C sepsis had similar concentrations of α C-specific IgM (245 ng/ml) and IgG (371 ng/ml), but acute sera from 13 women with invasive α C-expressing GBS infection had significantly higher concentrations (IgM 383 and IgG 476 ng/ml [p=0.036 and 0.038, respectively]). Convalescent sera from 5 of these women 16-49 days later had high α C-specific IgM and IgG concentrations (1355 and 4173 ng/ml, respectively). In vitro killing of α C-expressing GBS correlated with total α C-specific antibody concentration. Invasive disease but not colonization elicits α C-specific IgM and IgG in adults. Whether α C-specific IgG induced by vaccine would protect against disease in neonates merits further investigation. ^