937 resultados para VHDL, FPGA, Ethernet, High Throughput Screening


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: MicroRNAs (miRNAs) are being increasingly studied in relation to energy metabolism and body composition homeostasis. Indeed, the quantitative analysis of miRNAs expression in different adiposity conditions may contribute to understand the intimate mechanisms participating in body weight control and to find new biomarkers with diagnostic or prognostic value in obesity management. OBJECTIVE: The aim of this study was the search for miRNAs in blood cells whose expression could be used as prognostic biomarkers of weight loss. METHODS: Ten Caucasian obese women were selected among the participants in a weight-loss trial that consisted in following an energy-restricted treatment. Weight loss was considered unsuccessful when <5% of initial body weight (non-responders) and successful when >5% (responders). At baseline, total miRNA isolated from peripheral blood mononuclear cells (PBMC) was sequenced with SOLiD v4. The miRNA sequencing data were validated by RT-PCR. RESULTS: Differential baseline expression of several miRNAs was found between responders and non-responders. Two miRNAs were up-regulated in the non-responder group (mir-935 and mir-4772) and three others were down-regulated (mir-223, mir-224 and mir-376b). Both mir-935 and mir-4772 showed relevant associations with the magnitude of weight loss, although the expression of other transcripts (mir-874, mir-199b, mir-766, mir-589 and mir-148b) also correlated with weight loss. CONCLUSIONS: This research addresses the use of high-throughput sequencing technologies in the search for miRNA expression biomarkers in obesity, by determining the miRNA transcriptome of PBMC. Basal expression of different miRNAs, particularly mir-935 and mir-4772, could be prognostic biomarkers and may forecast the response to a hypocaloric diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supporting presentation slides from the Janet network end to end performance initiative

Relevância:

100.00% 100.00%

Publicador:

Resumo:

XII, 116 p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a fast, high-throughput method for characterizing the motility of microorganisms in 3D based on standard imaging microscopy. Instead of tracking individual cells, we analyse the spatio-temporal fluctuations of the intensity in the sample from time-lapse images and obtain the intermediate scattering function (ISF) of the system. We demonstrate our method on two different types of microorganisms: bacteria, both smooth swimming (run only) and wild type (run and tumble) Escherichia coli, and the bi-flagellate alga Chlamydomonas reinhardtii. We validate the methodology using computer simulations and particle tracking. From the ISF, we are able to extract (i) for E. coli: the swimming speed distribution, the fraction of motile cells and the diffusivity, and (ii) for C. reinhardtii: the swimming speed distribution, the amplitude and frequency of the oscillatory dynamics. In both cases, the motility parameters are averaged over \approx 10^4 cells and obtained in a few minutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain structure and function experience dramatic changes from embryonic to postnatal development. Microarray analyses have detected differential gene expression at different stages and in disease models, but gene expression information during early brain development is limited. We have generated >27 million reads to identify mRNAs from the mouse cortex for>16,000 genes at either embryonic day 18 (E18) or postnatal day 7 (P7), a period of significant synapto-genesis for neural circuit formation. In addition, we devised strategies to detect alternative splice forms and uncovered more splice variants. We observed differential expression of 3,758 genes between the 2 stages, many with known functions or predicted to be important for neural development. Neurogenesis-related genes, such as those encoding Sox4, Sox11, and zinc-finger proteins, were more highly expressed at E18 than at P7. In contrast, the genes encoding synaptic proteins such as synaptotagmin, complexin 2, and syntaxin were up-regulated from E18 to P7. We also found that several neurological disorder-related genes were highly expressed at E18. Our transcriptome analysis may serve as a blueprint for gene expression pattern and provide functional clues of previously unknown genes and disease-related genes during early brain development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using AuNP-modified homo-adenine DNA conjugate as a model system, simple colorimetric and resonance Rayleigh scattering assays have been developed for screening small molecules that trigger the formation of the non-Watson-Crick homo-adenine duplexes. The assay presented here is more simplified in format as it involves only one type of ssDNA modified Au-NP, and can be easily adapted to high-throughput screening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To screen for novel ribosomally synthesised antimicrobials, in-silico genome mining was performed on all publically available fully sequenced bacterial genomes. 49 novel type 1 lantibiotic clusters were identified from a number of species, genera and phyla not usually associated with lantibiotic production, and indicates high prevalence. A crucial step towards the commercialisation of fermented beverages is the characterisation of the microbial content. To achieve this goal, we applied next-generation sequencing techniques to analyse the bacterial and yeast populations of the organic, symbiotically-fermented beverages kefir, water kefir and kombucha. A number of minor components were revealed, many of which had not previously been associated with these beverages. The dominant microorganism in each of the water kefir grains and fermentates was Zymomonas, an ethanol-producing bacterium that had not previously been detected on such a scale. These studies represent the most accurate description of these populations to date, and should aid in future starter design and in determining which species are responsible for specific attributes of the beverages. Finally, high-throughput robotics was applied to screen for the presence of antimicrobial producers associated with these beverages. This revealed a low frequency of bacteriocin production amongst the bacterial isolates, with only lactococcins A, B and LcnN of lactococcin M being identified. However, a proteinaceous antimicrobial produced by the yeast Dekkera bruxellensis, isolated from kombucha, was found to be active against Lactobacillus bulgaricus. This peptide was patially purified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantification of protein-ligand interactions is essential for systems biology, drug discovery, and bioengineering. Ligand-induced changes in protein thermal stability provide a general, quantifiable signature of binding and may be monitored with dyes such as Sypro Orange (SO), which increase their fluorescence emission intensities upon interaction with the unfolded protein. This method is an experimentally straightforward, economical, and high-throughput approach for observing thermal melts using commonly available real-time polymerase chain reaction instrumentation. However, quantitative analysis requires careful consideration of the dye-mediated reporting mechanism and the underlying thermodynamic model. We determine affinity constants by analysis of ligand-mediated shifts in melting-temperature midpoint values. Ligand affinity is determined in a ligand titration series from shifts in free energies of stability at a common reference temperature. Thermodynamic parameters are obtained by fitting the inverse first derivative of the experimental signal reporting on thermal denaturation with equations that incorporate linear or nonlinear baseline models. We apply these methods to fit protein melts monitored with SO that exhibit prominent nonlinear post-transition baselines. SO can perturb the equilibria on which it is reporting. We analyze cases in which the ligand binds to both the native and denatured state or to the native state only and cases in which protein:ligand stoichiometry needs to treated explicitly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting from first-principles calculations whether mixed metallic elements phase-separate or form ordered structures is a major challenge of current materials research. It can be partially addressed in cases where experiments suggest the underlying lattice is conserved, using cluster expansion (CE) and a variety of exhaustive evaluation or genetic search algorithms. Evolutionary algorithms have been recently introduced to search for stable off-lattice structures at fixed mixture compositions. The general off-lattice problem is still unsolved. We present an integrated approach of CE and high-throughput ab initio calculations (HT) applicable to the full range of compositions in binary systems where the constituent elements or the intermediate ordered structures have different lattice types. The HT method replaces the search algorithms by direct calculation of a moderate number of naturally occurring prototypes representing all crystal systems and guides CE calculations of derivative structures. This synergy achieves the precision of the CE and the guiding strengths of the HT. Its application to poorly characterized binary Hf systems, believed to be phase-separating, defines three classes of alloys where CE and HT complement each other to uncover new ordered structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The task of nanofabrication can, in principle, be divided into two separate tracks: generation and replication of the patterned features. These two tracks are different in terms of characteristics, requirements, and aspects of emphasis. In general, generation of patterns is commonly achieved in a serial fashion using techniques that are typically slow, making this process only practical for making a small number of copies. Only when combined with a rapid duplication technique will fabrication at high-throughput and low-cost become feasible. Nanoskiving is unique in that it can be used for both generation and duplication of patterned nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel strategy that uses high-throughput methods of isolating and mapping C. elegans mutants susceptible to pathogen infection. We show that C. elegans mutants that exhibit an enhanced pathogen accumulation (epa) phenotype can be rapidly identified and isolated using a sorting system that allows automation of the analysis, sorting, and dispensing of C. elegans by measuring fluorescent bacteria inside the animals. Furthermore, we validate the use of Amplifluor as a new single nucleotide polymorphism (SNP) mapping technique in C. elegans. We show that a set of 9 SNPs allows the linkage of C. elegans mutants to a 5-8 megabase sub-chromosomal region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rising antibiotic resistance among Escherichia coli, the leading cause of urinary tract infections (UTIs), has placed a new focus on molecular pathogenesis studies, aiming to identify new therapeutic targets. Anti-virulence agents are attractive as chemotherapeutics to attenuate an organism during disease but not necessarily during benign commensalism, thus decreasing the stress on beneficial microbial communities and lessening the emergence of resistance. We and others have demonstrated that the K antigen capsule of E. coli is a preeminent virulence determinant during UTI and more invasive diseases. Components of assembly and export are highly conserved among the major K antigen capsular types associated with UTI-causing E. coli and are distinct from the capsule biogenesis machinery of many commensal E. coli, making these attractive therapeutic targets. We conducted a screen for anti-capsular small molecules and identified an agent designated "C7" that blocks the production of K1 and K5 capsules, unrelated polysaccharide types among the Group 2-3 capsules. Herein lies proof-of-concept that this screen may be implemented with larger chemical libraries to identify second-generation small-molecule inhibitors of capsule biogenesis. These inhibitors will lead to a better understanding of capsule biogenesis and may represent a new class of therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fundamental phenotypes of growth rate, size and morphology are the result of complex interactions between genotype and environment. We developed a high-throughput software application, WormSizer, which computes size and shape of nematodes from brightfield images. Existing methods for estimating volume either coarsely model the nematode as a cylinder or assume the worm shape or opacity is invariant. Our estimate is more robust to changes in morphology or optical density as it only assumes radial symmetry. This open source software is written as a plugin for the well-known image-processing framework Fiji/ImageJ. It may therefore be extended easily. We evaluated the technical performance of this framework, and we used it to analyze growth and shape of several canonical Caenorhabditis elegans mutants in a developmental time series. We confirm quantitatively that a Dumpy (Dpy) mutant is short and fat and that a Long (Lon) mutant is long and thin. We show that daf-2 insulin-like receptor mutants are larger than wild-type upon hatching but grow slow, and WormSizer can distinguish dauer larvae from normal larvae. We also show that a Small (Sma) mutant is actually smaller than wild-type at all stages of larval development. WormSizer works with Uncoordinated (Unc) and Roller (Rol) mutants as well, indicating that it can be used with mutants despite behavioral phenotypes. We used our complete data set to perform a power analysis, giving users a sense of how many images are needed to detect different effect sizes. Our analysis confirms and extends on existing phenotypic characterization of well-characterized mutants, demonstrating the utility and robustness of WormSizer.