876 resultados para User-Machine System
Resumo:
This paper describes an interactive system for quickly modelling 3D body shapes from a single image. It provides the user with a convenient way to obtain their 3D body shapes so as to try on virtual garments online. For the ease of use, we first introduce a novel interface for users to conveniently extract anthropometric measurements from a single photo, while using readily available scene cues for automatic image rectification. Then, we propose a unified probabilistic framework using Gaussian processes, which predict the body parameters from input measurements while correcting the aspect ratio ambiguity resulting from photo rectification. Extensive experiments and user studies have supported the efficacy of our system. This system is now being exploited commercially online1. © 2011. The copyright of this document resides with its authors.
Resumo:
The M-Machine is an experimental multicomputer being developed to test architectural concepts motivated by the constraints of modern semiconductor technology and the demands of programming systems. The M- Machine computing nodes are connected with a 3-D mesh network; each node is a multithreaded processor incorporating 12 function units, on-chip cache, and local memory. The multiple function units are used to exploit both instruction-level and thread-level parallelism. A user accessible message passing system yields fast communication and synchronization between nodes. Rapid access to remote memory is provided transparently to the user with a combination of hardware and software mechanisms. This paper presents the architecture of the M-Machine and describes how its mechanisms maximize both single thread performance and overall system throughput.
Resumo:
With the increased use of "Virtual Machines" (VMs) as vehicles that isolate applications running on the same host, it is necessary to devise techniques that enable multiple VMs to share underlying resources both fairly and efficiently. To that end, one common approach is to deploy complex resource management techniques in the hosting infrastructure. Alternately, in this paper, we advocate the use of self-adaptation in the VMs themselves based on feedback about resource usage and availability. Consequently, we define a "Friendly" VM (FVM) to be a virtual machine that adjusts its demand for system resources, so that they are both efficiently and fairly allocated to competing FVMs. Such properties are ensured using one of many provably convergent control rules, such as AIMD. By adopting this distributed application-based approach to resource management, it is not necessary to make assumptions about the underlying resources nor about the requirements of FVMs competing for these resources. To demonstrate the elegance and simplicity of our approach, we present a prototype implementation of our FVM framework in User-Mode Linux (UML)-an implementation that consists of less than 500 lines of code changes to UML. We present an analytic, control-theoretic model of FVM adaptation, which establishes convergence and fairness properties. These properties are also backed up with experimental results using our prototype FVM implementation.
Resumo:
A novel hybrid data-driven approach is developed for forecasting power system parameters with the goal of increasing the efficiency of short-term forecasting studies for non-stationary time-series. The proposed approach is based on mode decomposition and a feature analysis of initial retrospective data using the Hilbert-Huang transform and machine learning algorithms. The random forests and gradient boosting trees learning techniques were examined. The decision tree techniques were used to rank the importance of variables employed in the forecasting models. The Mean Decrease Gini index is employed as an impurity function. The resulting hybrid forecasting models employ the radial basis function neural network and support vector regression. A part from introduction and references the paper is organized as follows. The second section presents the background and the review of several approaches for short-term forecasting of power system parameters. In the third section a hybrid machine learningbased algorithm using Hilbert-Huang transform is developed for short-term forecasting of power system parameters. Fourth section describes the decision tree learning algorithms used for the issue of variables importance. Finally in section six the experimental results in the following electric power problems are presented: active power flow forecasting, electricity price forecasting and for the wind speed and direction forecasting.
Resumo:
The histological grading of cervical intraepithelial neoplasia (CIN) remains subjective, resulting in inter- and intra-observer variation and poor reproducibility in the grading of cervical lesions. This study has attempted to develop an objective grading system using automated machine vision. The architectural features of cervical squamous epithelium are quantitatively analysed using a combination of computerized digital image processing and Delaunay triangulation analysis; 230 images digitally captured from cases previously classified by a gynaecological pathologist included normal cervical squamous epithelium (n = 30), koilocytosis (n = 46), CIN 1 (n = 52), CIN 2 (n = 56), and CIN 3 (n=46). Intra- and inter-observer variation had kappa values of 0.502 and 0.415, respectively. A machine vision system was developed in KS400 macro programming language to segment and mark the centres of all nuclei within the epithelium. By object-oriented analysis of image components, the positional information of nuclei was used to construct a Delaunay triangulation mesh. Each mesh was analysed to compute triangle dimensions including the mean triangle area, the mean triangle edge length, and the number of triangles per unit area, giving an individual quantitative profile of measurements for each case. Discriminant analysis of the geometric data revealed the significant discriminatory variables from which a classification score was derived. The scoring system distinguished between normal and CIN 3 in 98.7% of cases and between koilocytosis and CIN 1 in 76.5% of cases, but only 62.3% of the CIN cases were classified into the correct group, with the CIN 2 group showing the highest rate of misclassification. Graphical plots of triangulation data demonstrated the continuum of morphological change from normal squamous epithelium to the highest grade of CIN, with overlapping of the groups originally defined by the pathologists. This study shows that automated location of nuclei in cervical biopsies using computerized image analysis is possible. Analysis of positional information enables quantitative evaluation of architectural features in CIN using Delaunay triangulation meshes, which is effective in the objective classification of CIN. This demonstrates the future potential of automated machine vision systems in diagnostic histopathology. Copyright (C) 2000 John Wiley and Sons, Ltd.
Resumo:
This paper reports on a study of service users' views on Irish child protection services. Qualitative interviews were conducted with 67 service users, including young people between 13 and 23. The findings showed that despite refocusing and public service management reforms, service users still experience involvement with the services as intimidating and stressful and while they acknowledged opportunities to participate in the child protection process, they found the experience to be very difficult. Their definition of ‘needs’ was somewhat at odds with that suggested in official documentation, and they viewed the execution of a child protection plan more as a coercive requirement to comply with ‘tasks’ set by workers than a conjoint effort to enhance their children's welfare. As in previous studies, the data showed how the development of good relationships between workers and service users could compensate for the harsher aspects of involvement with child protection. In addition, this study demonstrated a high level of discernment on the part of service users, highlighting their expectation of quality standards in respect of courtesy, respect, accountability, transparency and practitioner expertise.
Resumo:
Process monitoring and Predictive Maintenance (PdM) are gaining increasing attention in most manufacturing environments as a means of reducing maintenance related costs and downtime. This is especially true in industries that are data intensive such as semiconductor manufacturing. In this paper an adaptive PdM based flexible maintenance scheduling decision support system, which pays particular attention to associated opportunity and risk costs, is presented. The proposed system, which employs Machine Learning and regularized regression methods, exploits new information as it becomes available from newly processed components to refine remaining useful life estimates and associated costs and risks. The system has been validated on a real industrial dataset related to an Ion Beam Etching process for semiconductor manufacturing.
Resumo:
The paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.
Resumo:
De plus en plus de recherches sur les Interactions Humain-Machine (IHM) tentent d’effectuer des analyses fines de l’interaction afin de faire ressortir ce qui influence les comportements des utilisateurs. Tant au niveau de l’évaluation de la performance que de l’expérience des utilisateurs, on note qu’une attention particulière est maintenant portée aux réactions émotionnelles et cognitives lors de l’interaction. Les approches qualitatives standards sont limitées, car elles se fondent sur l’observation et des entrevues après l’interaction, limitant ainsi la précision du diagnostic. L’expérience utilisateur et les réactions émotionnelles étant de nature hautement dynamique et contextualisée, les approches d’évaluation doivent l’être de même afin de permettre un diagnostic précis de l’interaction. Cette thèse présente une approche d’évaluation quantitative et dynamique qui permet de contextualiser les réactions des utilisateurs afin d’en identifier les antécédents dans l’interaction avec un système. Pour ce faire, ce travail s’articule autour de trois axes. 1) La reconnaissance automatique des buts et de la structure de tâches de l’utilisateur, à l’aide de mesures oculométriques et d’activité dans l’environnement par apprentissage machine. 2) L’inférence de construits psychologiques (activation, valence émotionnelle et charge cognitive) via l’analyse des signaux physiologiques. 3) Le diagnostic de l‘interaction reposant sur le couplage dynamique des deux précédentes opérations. Les idées et le développement de notre approche sont illustrés par leur application dans deux contextes expérimentaux : le commerce électronique et l’apprentissage par simulation. Nous présentons aussi l’outil informatique complet qui a été implémenté afin de permettre à des professionnels en évaluation (ex. : ergonomes, concepteurs de jeux, formateurs) d’utiliser l’approche proposée pour l’évaluation d’IHM. Celui-ci est conçu de manière à faciliter la triangulation des appareils de mesure impliqués dans ce travail et à s’intégrer aux méthodes classiques d’évaluation de l’interaction (ex. : questionnaires et codage des observations).
Resumo:
Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.
Resumo:
This is a Named Entity Based Question Answering System for Malayalam Language. Although a vast amount of information is available today in digital form, no effective information access mechanism exists to provide humans with convenient information access. Information Retrieval and Question Answering systems are the two mechanisms available now for information access. Information systems typically return a long list of documents in response to a user’s query which are to be skimmed by the user to determine whether they contain an answer. But a Question Answering System allows the user to state his/her information need as a natural language question and receives most appropriate answer in a word or a sentence or a paragraph. This system is based on Named Entity Tagging and Question Classification. Document tagging extracts useful information from the documents which will be used in finding the answer to the question. Question Classification extracts useful information from the question to determine the type of the question and the way in which the question is to be answered. Various Machine Learning methods are used to tag the documents. Rule-Based Approach is used for Question Classification. Malayalam belongs to the Dravidian family of languages and is one of the four major languages of this family. It is one of the 22 Scheduled Languages of India with official language status in the state of Kerala. It is spoken by 40 million people. Malayalam is a morphologically rich agglutinative language and relatively of free word order. Also Malayalam has a productive morphology that allows the creation of complex words which are often highly ambiguous. Document tagging tools such as Parts-of-Speech Tagger, Phrase Chunker, Named Entity Tagger, and Compound Word Splitter are developed as a part of this research work. No such tools were available for Malayalam language. Finite State Transducer, High Order Conditional Random Field, Artificial Immunity System Principles, and Support Vector Machines are the techniques used for the design of these document preprocessing tools. This research work describes how the Named Entity is used to represent the documents. Single sentence questions are used to test the system. Overall Precision and Recall obtained are 88.5% and 85.9% respectively. This work can be extended in several directions. The coverage of non-factoid questions can be increased and also it can be extended to include open domain applications. Reference Resolution and Word Sense Disambiguation techniques are suggested as the future enhancements