907 resultados para User-Designer Collaboration, Problem Restructuring, Scenario Building
Resumo:
The loss of habitat and biodiversity worldwide has led to considerable resources being spent on conservation interventions. Prioritising these actions is challenging due to the complexity of the problem and because there can be multiple actors undertaking conservation actions, often with divergent or partially overlapping objectives. We explore this issue with a simulation study involving two agents sequentially purchasing land for the conservation of multiple species using three scenarios comprising either divergent or partially overlapping objectives between the agents. The first scenario investigates the situation where both agents are targeting different sets of threatened species. The second and third scenarios represent a case where a government agency attempts to implement a complementary conservation network representing 200 species, while a non-government organisation is focused on achieving additional protection for the ten rarest species. Simulated input data was generated using distributions taken from real data to model the cost of parcels, and the rarity and co-occurrence of species. We investigated three types of collaborative interactions between agents: acting in isolation, sharing information and pooling resources with the third option resulting in the agents combining their resources and effectively acting as a single entity. In each scenario we determine the cost savings when an agent moves from acting in isolation to either sharing information or pooling resources with the other agent. The model demonstrates how the value of collaboration can vary significantly in different situations. In most cases, collaborating would have associated costs and these costs need to be weighed against the potential benefits from collaboration. Our model demonstrates a method for determining the range of costs that would result in collaboration providing an efficient use of scarce conservation resources.
Resumo:
The realization of the Semantic Web is constrained by a knowledge acquisition bottleneck, i.e. the problem of how to add RDF mark-up to the millions of ordinary web pages that already exist. Information Extraction (IE) has been proposed as a solution to the annotation bottleneck. In the task based evaluation reported here, we compared the performance of users without access to annotation, users working with annotations which had been produced from manually constructed knowledge bases, and users working with annotations augmented using IE. We looked at retrieval performance, overlap between retrieved items and the two sets of annotations, and usage of annotation options. Automatically generated annotations were found to add value to the browsing experience in the scenario investigated. Copyright 2005 ACM.
Resumo:
Term dependence is a natural consequence of language use. Its successful representation has been a long standing goal for Information Retrieval research. We present a methodology for the construction of a concept hierarchy that takes into account the three basic dimensions of term dependence. We also introduce a document evaluation function that allows the use of the concept hierarchy as a user profile for Information Filtering. Initial experimental results indicate that this is a promising approach for incorporating term dependence in the way documents are filtered.
Resumo:
Rapid advances in electronic communication devices and technologies have resulted in a shift in the way communication applications are being developed. These new development strategies provide abstract views of the underlying communication technologies and lead to the so-called user-centric communication applications. One user-centric communication (UCC) initiative is the Communication Virtual Machine (CVM) technology, which uses the Communication Modeling Language (CML) for modeling communication services and the CVM for realizing these services. In communication-intensive domains such as telemedicine and disaster management, there is an increasing need for user-centric communication applications that are domain-specific and that support the dynamic coordination of communication services commonly found in collaborative communication scenarios. However, UCC approaches like the CVM offer little support for the dynamic coordination of communication services resulting from inherent dependencies between individual steps of a collaboration task. Users either have to manually coordinate communication services, or reply on a process modeling technique to build customized solutions for services in a specific domain that are usually costly, rigidly defined and technology specific. ^ This dissertation proposes a domain-specific modeling approach to address this problem by extending the CVM technology with communication-specific abstractions of workflow concepts commonly found in business processes. The extension involves (1) the definition of the Workflow Communication Modeling Language (WF-CML), a superset of CML, and (2) the extension of the functionality of CVM to process communication-specific workflows. The definition of WF-CML includes the meta-model and the dynamic semantics for control constructs and concurrency. We also extended the CVM prototype to handle the modeling and realization of WF-CML models. A comparative study of the proposed approach with other workflow environments validates the claimed benefits of WF-CML and CVM.^
Resumo:
This paper describes a substantial effort to build a real-time interactive multimodal dialogue system with a focus on emotional and non-verbal interaction capabilities. The work is motivated by the aim to provide technology with competences in perceiving and producing the emotional and non-verbal behaviours required to sustain a conversational dialogue. We present the Sensitive Artificial Listener (SAL) scenario as a setting which seems particularly suited for the study of emotional and non-verbal behaviour, since it requires only very limited verbal understanding on the part of the machine. This scenario allows us to concentrate on non-verbal capabilities without having to address at the same time the challenges of spoken language understanding, task modeling etc. We first summarise three prototype versions of the SAL scenario, in which the behaviour of the Sensitive Artificial Listener characters was determined by a human operator. These prototypes served the purpose of verifying the effectiveness of the SAL scenario and allowed us to collect data required for building system components for analysing and synthesising the respective behaviours. We then describe the fully autonomous integrated real-time system we created, which combines incremental analysis of user behaviour, dialogue management, and synthesis of speaker and listener behaviour of a SAL character displayed as a virtual agent. We discuss principles that should underlie the evaluation of SAL-type systems. Since the system is designed for modularity and reuse, and since it is publicly available, the SAL system has potential as a joint research tool in the affective computing research community.
Resumo:
Title: The £ for lb. Challenge – A lose - win – win scenario. Results from a novel workplace-based, peer-led weight management programme in 2016.
Names: Damien Bennett, Declan Bradley, Angela McComb, Amy Kiernan, Tracey Owen
Background: Tackling obesity is a public health priority. The £ for lb. Challenge is the first country wide, workplace-based peer-led weight management programme in the UK or Ireland with participants from a range of private and public businesses in Northern Ireland (NI).
Intervention: The intervention was workplace-based, led by workplace Champions and based on the NHS Choices 12 week weight loss guide. It operated from January to April 2016. Overweight and obese adult workers were eligible. Training of Peer Champions (staff volunteers) involved two half day workshops delivered by dieticians and physical activity professionals.
Outcome measurement: Weight was measured at enrolment and 12 weekly intervals. Changes in weight, % weight, BMI and % BMI were determined for the whole cohort and sex and deprivation subgroups.
Results: There were 1513 eligible participants from 35 companies. Engagement rate was 98%. 75% of participants completed the programme. Mean weight loss was 2.4 kg or 2.7%. Almost a quarter (24%) lost at least 5% initial bodyweight. Male participants were over twice as likely to complete the programme and three times more likely to lose 5% body weight or more. Over £17,000 was raised for NI charities.
Discussion: The £ for lb. Challenge is a successful health improvement programme with important weight loss for many participants, particularly male workers. With high levels of user engagement and ownership and successful multidisciplinary collaboration between public health, voluntary bodies, private and public companies it is a novel workplace based model with potential to expand.
Resumo:
The UK’s historically low cost of energy has encouraged a culture that considers energy to be in limitless supply and excessive levels of consumption acceptable. Now that supplies are becoming restricted and costs rising, it is becoming recognised this energy culture has created a legacy stock of buildings with poor building fabric, limited energy efficiency equipment and even lower levels of energy awareness. Cost effective technologies are readily available but not adopted by UK SMEs in non-domestic buildings, as rational economic theory would expect. Policy-makers attribute this to inaccessibility of information and investment and design policies accordingly. However, as escalation of demand continues an alternative driver of this paradox must exist. This research hypothesises that this is the ownership structures of non-domestic buildings. Tenure of business premises is found to prevent adoption of energy conservation opportunities; 64% of SME surveyed encountered barriers to energy efficiency related to building ownership. When increased pro rata to reflect the UK SME population, almost 2.5 million businesses appear unable to benefit from energy improvements.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.
Resumo:
Presentation from the MARAC conference in Pittsburgh, PA on April 14–16, 2016. S24; - Pittsburgh Pop-Up #2.
Resumo:
With the rise of smart phones, lifelogging devices (e.g. Google Glass) and popularity of image sharing websites (e.g. Flickr), users are capturing and sharing every aspect of their life online producing a wealth of visual content. Of these uploaded images, the majority are poorly annotated or exist in complete semantic isolation making the process of building retrieval systems difficult as one must firstly understand the meaning of an image in order to retrieve it. To alleviate this problem, many image sharing websites offer manual annotation tools which allow the user to “tag” their photos, however, these techniques are laborious and as a result have been poorly adopted; Sigurbjörnsson and van Zwol (2008) showed that 64% of images uploaded to Flickr are annotated with < 4 tags. Due to this, an entire body of research has focused on the automatic annotation of images (Hanbury, 2008; Smeulders et al., 2000; Zhang et al., 2012a) where one attempts to bridge the semantic gap between an image’s appearance and meaning e.g. the objects present. Despite two decades of research the semantic gap still largely exists and as a result automatic annotation models often offer unsatisfactory performance for industrial implementation. Further, these techniques can only annotate what they see, thus ignoring the “bigger picture” surrounding an image (e.g. its location, the event, the people present etc). Much work has therefore focused on building photo tag recommendation (PTR) methods which aid the user in the annotation process by suggesting tags related to those already present. These works have mainly focused on computing relationships between tags based on historical images e.g. that NY and timessquare co-exist in many images and are therefore highly correlated. However, tags are inherently noisy, sparse and ill-defined often resulting in poor PTR accuracy e.g. does NY refer to New York or New Year? This thesis proposes the exploitation of an image’s context which, unlike textual evidences, is always present, in order to alleviate this ambiguity in the tag recommendation process. Specifically we exploit the “what, who, where, when and how” of the image capture process in order to complement textual evidences in various photo tag recommendation and retrieval scenarios. In part II, we combine text, content-based (e.g. # of faces present) and contextual (e.g. day-of-the-week taken) signals for tag recommendation purposes, achieving up to a 75% improvement to precision@5 in comparison to a text-only TF-IDF baseline. We then consider external knowledge sources (i.e. Wikipedia & Twitter) as an alternative to (slower moving) Flickr in order to build recommendation models on, showing that similar accuracy could be achieved on these faster moving, yet entirely textual, datasets. In part II, we also highlight the merits of diversifying tag recommendation lists before discussing at length various problems with existing automatic image annotation and photo tag recommendation evaluation collections. In part III, we propose three new image retrieval scenarios, namely “visual event summarisation”, “image popularity prediction” and “lifelog summarisation”. In the first scenario, we attempt to produce a rank of relevant and diverse images for various news events by (i) removing irrelevant images such memes and visual duplicates (ii) before semantically clustering images based on the tweets in which they were originally posted. Using this approach, we were able to achieve over 50% precision for images in the top 5 ranks. In the second retrieval scenario, we show that by combining contextual and content-based features from images, we are able to predict if it will become “popular” (or not) with 74% accuracy, using an SVM classifier. Finally, in chapter 9 we employ blur detection and perceptual-hash clustering in order to remove noisy images from lifelogs, before combining visual and geo-temporal signals in order to capture a user’s “key moments” within their day. We believe that the results of this thesis show an important step towards building effective image retrieval models when there lacks sufficient textual content (i.e. a cold start).
Resumo:
Automation technologies are widely acclaimed to have the potential to significantly reduce energy consumption and energy-related costs in buildings. However, despite the abundance of commercially available technologies, automation in domestic environments keep on meeting commercial failures. The main reason for this is the development process that is used to build the automation applications, which tend to focus more on technical aspects rather than on the needs and limitations of the users. An instance of this problem is the complex and poorly designed home automation front-ends that deter customers from investing in a home automation product. On the other hand, developing a usable and interactive interface is a complicated task for developers due to the multidisciplinary challenges that need to be identified and solved. In this context, the current research work investigates the different design problems associated with developing a home automation interface as well as the existing design solutions that are applied to these problems. The Qualitative Data Analysis approach was used for collecting data from research papers and the open coding process was used to cluster the findings. From the analysis of the data collected, requirements for designing the interface were derived. A home energy management functionality for a Web-based home automation front-end was developed as a proof-of-concept and a user evaluation was used to assess the usability of the interface. The results of the evaluation showed that this holistic approach to designing interfaces improved its usability which increases the chances of its commercial success.
Resumo:
The high rate of teacher attrition in urban schools is well documented. While this does not seem like a problem in Carter County, this equates to hundreds of teachers that need to be replaced annually. Since school year (SY) 2007-08, Carter County has lost over 7,100 teachers, approximately half of (50.1%) of whom resigned, often going to neighboring, higher-paying jurisdictions as suggested by exit survey data (SY2016-2020 Strategic Plan). Included in this study is a range of practices principals use to retain teachers. While the role of the principal is recognized as a critical element in teacher retention, few studies explore the specific practices principals implement to retain teachers and how they use their time to accomplish this task. Through interviews, observations, document analysis and reflective notes, the study identifies the practices four elementary school principals of high and relatively low attrition schools use to support teacher retention. In doing so, the study uses a qualitative cross-case analysis approach. The researcher examined the following leadership practices of the principal and their impact on teacher retention: (a) providing leadership, (b) supporting new teachers, (c) training and mentoring teaching staff, (d) creating opportunities for collaboration, (d) creating a positive school climate, and (e) promoting teacher autonomy. The following research questions served as a foundational guide for the development and implementation of this study: 1. How do principals prioritize addressing teacher attrition or retention relative to all of their other responsibilities? How do they allocate their time to this challenge? 2. What do principals in schools with low attrition rates do to promote retention that principals in high attrition schools do not? What specific practices or interventions are principals in these two types of schools utilizing to retain teachers? Is there evidence to support their use of the practices? The findings that emerge from the data revealed the various practices principals use to influence and support teachers do not differ between the four schools.
Resumo:
Non-orthogonal multiple access (NOMA) is emerging as a promising multiple access technology for the fifth generation cellular networks to address the fast growing mobile data traffic. It applies superposition coding in transmitters, allowing simultaneous allocation of the same frequency resource to multiple intra-cell users. Successive interference cancellation is used at the receivers to cancel intra-cell interference. User pairing and power allocation (UPPA) is a key design aspect of NOMA. Existing UPPA algorithms are mainly based on exhaustive search method with extensive computation complexity, which can severely affect the NOMA performance. A fast proportional fairness (PF) scheduling based UPPA algorithm is proposed to address the problem. The novel idea is to form user pairs around the users with the highest PF metrics with pre-configured fixed power allocation. Systemlevel simulation results show that the proposed algorithm is significantly faster (seven times faster for the scenario with 20 users) with a negligible throughput loss than the existing exhaustive search algorithm.
Resumo:
This paper presents a framework to build medical training applications by using virtual reality and a tool that helps the class instantiation of this framework. The main purpose is to make easier the building of virtual reality applications in the medical training area, considering systems to simulate biopsy exams and make available deformation, collision detection, and stereoscopy functionalities. The instantiation of the classes allows quick implementation of the tools for such a purpose, thus reducing errors and offering low cost due to the use of open source tools. Using the instantiation tool, the process of building applications is fast and easy. Therefore, computer programmers can obtain an initial application and adapt it to their needs. This tool allows the user to include, delete, and edit parameters in the functionalities chosen as well as storing these parameters for future use. In order to verify the efficiency of the framework, some case studies are presented.