947 resultados para Urban pest management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Asia‐Pacific region is characterised by rapid population growth and urbanisation. These trends often result in an increasing consumption of land, which in turn lead to spatially expansive and discontinuous urban development. As a consequence, local communities and the environment face strong pressures. Many cities in the region have developed policies to tackle the issue of rapid growth and its associated consequences, for example climate change. The broad aim of this paper is to identify the nature, trends and strategies of growth management in major Asia‐Pacific city‐regions, and their implications for natural resource management and infrastructure provision. More specifically, this research seeks to provide insights on sustainable urban development practice, particularly on the promotion of compact urbanisation within the Asia‐Pacific’s fastest growing regions. The methodology of the paper includes a detailed literature review and a comparative analysis of existing strategies and policies. The literature review focuses on the key concepts related to sustainable urban growth management. It also includes existing applications of urban growth management approaches and planning information system in managing growth. Following the literature review, the paper undertakes a comparative analysis of the strategies of major Asia‐Pacific city‐regions of Kuala Lumpur and Hong Kong in terms of their approaches to sustainable urban development. The findings of the paper provide a clear understanding of the necessity of sustainable urban development practices. It contributes to the development of a substantial base for further research. Ultimately, this research aims to shed light on sustainable urban development by providing insights on the management of growth, natural resources and urban infrastructures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water Sensitive Urban Design (WSUD) systems have the potential mitigate the hydrologic disturbance and water quality concerns associated with stormwater runoff from urban development. In the last few years WSUD has been strongly promoted in South East Queensland (SEQ) and new developments are now required to use WSUD systems to manage stormwater runoff. However, there has been limited field evaluation of WSUD systems in SEQ and consequently knowledge of their effectiveness in the field, under storm events, is limited. The objective of this research project was to assess the effectiveness of WSUD systems installed in a residential development, under real storm events. To achieve this objective, a constructed wetland, bioretention swale and a bioretention basin were evaluated for their ability to improve the hydrologic and water quality characteristics of stormwater runoff from urban development. The monitoring focused on storm events, with sophisticated event monitoring stations measuring the inflow and outflow from WSUD systems. Data analysis undertaken confirmed that the constructed wetland, bioretention basin and bioretention swale improved the hydrologic characteristics by reducing peak flow. The bioretention systems, particularly the bioretention basin also reduced the runoff volume and frequency of flow, meeting key objectives of current urban stormwater management. The pollutant loads were reduced by the WSUD systems to above or just below the regional guidelines, showing significant reductions to TSS (70-85%), TN (40-50%) and TP (50%). The load reduction of NOx and PO4 3- by the bioretention basin was poor (<20%), whilst the constructed wetland effectively reduced the load of these pollutants in the outflow by approximately 90%. The primary reason for the load reduction in the wetland was due to a reduction in concentration in the outflow, showing efficient treatment of stormwater by the system. In contrast, the concentration of key pollutants exiting the bioretention basin were higher than the inflow. However, as the volume of stormwater exiting the bioretention basin was significantly lower than the inflow, a load reduction was still achieved. Calibrated MUSIC modelling showed that the bioretention basin, and in particular, the constructed wetland were undersized, with 34% and 62% of stormwater bypassing the treatment zones in the devices. Over the long term, a large proportion of runoff would not receive treatment, considerably reducing the effectiveness of the WSUD systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rapidly developing information and telecommunication technologies and their platforms in the late 20th Century helped improve urban infrastructure management and influenced quality of life. Telecommunication technologies make it possible for people to deliver text, audio and video material using wired, wireless or fibre-optic networks. Technologies convergence amongst these digital devices continues to create new ways in which the information and telecommunication technologies are used. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones. This chapter discusses the recent developments in telecommunication networks and trends in convergence technologies, their implications for urban infrastructure planning, and for the quality of life of urban residents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stormwater pollution has been recognised as one of the main causes of aquatic ecosystem degradation and poses a significant threat to both the goal of ecological sustainable development as well as human health and wellbeing. In response, water sensitive urban design (WSUD) practices have been put forward as a strategy to mitigate the detrimental impacts of urban stormwater runoff quality and to safeguard ecosystem functions. However, despite studies that support its efficiency in urban stormwater management, the mainstreaming of WSUD remains a significant challenge. This paper proposes that viewing WSUD through the lens of the integrated urban metabolism framework which encourages an interdisciplinary approach and facilitates dialogue through knowledge transfer is a strategy in which the implementation of WSUD can be mainstreamed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent experimental evidence has shown that learning occurs in the host selection behaviour of Helicoverpa armigera (Hübner), one of the world‘s most important agricultural pests. This paper discusses how the occurrence of learning changes our understanding of the host selection behaviour of this polyphagous moth. Host preferences determined from previous laboratory studies may be vastly different from preferences exhibited by moths in the field, where the abundance of particular hosts may be more likely to determine host preference. In support of this prediction, a number of field studies have shown that the ‘attractiveness’ of different hosts for H. armigera oviposition may depend on the relative abundance of these host species. Insect learning may play a fundamental role in the design and application of present and future integrated pest management strategies such as the use of host volatiles, trap crops and resistant crop varieties for monitoring and controlling this important pest species

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The polyphagous moth Helicoverpa armigera (Hübner) is one of the world's most important agricultural pests. A number of existing approaches and future designs for management of H. armigera rely on the assumption that moths do not exhibit either genetically and/or non-genetically based variation for host plant utilization. We review recent empirical evidence demonstrating that both these forms of variation influence host plant use in this moth. The significance of this variation in H. armigera in relation to current and future pest management strategies is examined. We provide recommendations on future research needs and directions for sustainable management of H. armigera, under a framework that includes consideration of intra-specific variation for host use relevant in this and other similar pest species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult owing to species biology and behavioural characteristics. The design of robust sampling programmes should be based on an underlying statistical distribution that is sufficiently flexible to capture variations in the spatial distribution of the target species. Results: Comparisons are made of the accuracy of four probability-of-detection sampling models - the negative binomial model,1 the Poisson model,1 the double logarithmic model2 and the compound model3 - for detection of insects over a broad range of insect densities. Although the double log and negative binomial models performed well under specific conditions, it is shown that, of the four models examined, the compound model performed the best over a broad range of insect spatial distributions and densities. In particular, this model predicted well the number of samples required when insect density was high and clumped within experimental storages. Conclusions: This paper reinforces the need for effective sampling programs designed to detect insects over a broad range of spatial distributions. The compound model is robust over a broad range of insect densities and leads to substantial improvement in detection probabilities within highly variable systems such as grain storage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bactrocera dorsalis (Hendel), Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, and Bactrocera carambolae Drew & Hancock are pest members within the B. dorsalis species complex of tropical fruit flies. The species status of these taxa is unclear and this confounds quarantine, pest management, and general research. Mating studies carried out under uniform experimental conditions are required as part of resolving their species limits. These four taxa were collected from the wild and established as laboratory cultures for which we subsequently determined levels of prezygotic compatibility, assessed by field cage mating trials for all pair-wise combinations. We demonstrate random mating among all pair-wise combinations involving B. dorsalis, B. papayae, and B. philippinensis. B. carambolae was relatively incompatible with each of these species as evidenced by nonrandom mating for all crosses. Reasons for incompatibility involving B. carambolae remain unclear; however, we observed differences in the location of couples in the field cage for some comparisons. Alongside other factors such as pheromone composition or other courtship signals, this may lead to reduced interspecific mating compatibility with B. carambolae. These data add to evidence that B. dorsalis, B. papayae, and B. philippinensis represent the same biological species, while B. carambolae remains sufficiently different to maintain its current taxonomic identity. This poses significant implications for this group's systematics, impacting on pest management, and international trade.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bactrocera dorsalis sensu stricto, B. papayae, B. philippinensis and B. carambolae are serious pest fruit fly species of the B. dorsalis complex that predominantly occur in south-east Asia and the Pacific. Identifying molecular diagnostics has proven problematic for these four taxa, a situation that cofounds biosecurity and quarantine efforts and which may be the result of at least some of these taxa representing the same biological species. We therefore conducted a phylogenetic study of these four species (and closely related outgroup taxa) based on the individuals collected from a wide geographic range; sequencing six loci (cox1, nad4-3′, CAD, period, ITS1, ITS2) for approximately 20 individuals from each of 16 sample sites. Data were analysed within maximum likelihood and Bayesian phylogenetic frameworks for individual loci and concatenated data sets for which we applied multiple monophyly and species delimitation tests. Species monophyly was measured by clade support, posterior probability or bootstrap resampling for Bayesian and likelihood analyses respectively, Rosenberg's reciprocal monophyly measure, P(AB), Rodrigo's (P(RD)) and the genealogical sorting index, gsi. We specifically tested whether there was phylogenetic support for the four 'ingroup' pest species using a data set of multiple individuals sampled from a number of populations. Based on our combined data set, Bactrocera carambolae emerges as a distinct monophyletic clade, whereas B. dorsalis s.s., B. papayae and B. philippinensis are unresolved. These data add to the growing body of evidence that B. dorsalis s.s., B. papayae and B. philippinensis are the same biological species, which poses consequences for quarantine, trade and pest management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly similar, morphologically and genetically, to the destructive pest, the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). This similarity has rendered the discovery of reliable diagnostic characters problematic, which, in view of the economic importance of these taxa and the international trade implications, has resulted in ongoing difficulties for many areas of plant protection and food security. Consequently, a major international collaborative and integrated multidisciplinary research effort was initiated in 2009 to build upon existing literature with the specific aim of resolving biological species limits among B. papayae, B. philippinensis, B. carambolae, B. invadens and B. dorsalis to overcome constraints to pest management and international trade. Bactrocera philippinensis has recently been synonymized with B. papayae as a result of this initiative and this review corroborates that finding; however, the other names remain in use. While consistent characters have been found to reliably distinguish B. carambolae from B. dorsalis, B. invadens and B. papayae, no such characters have been found to differentiate the latter three putative species. We conclude that B. carambolae is a valid species and that the remaining taxa, B. dorsalis, B. invadens and B. papayae, represent the same species. Thus, we consider B. dorsalis (Hendel) as the senior synonym of B. papayae Drew and Hancock syn.n. and B. invadens Drew, Tsuruta & White syn.n. A redescription of B. dorsalis is provided. Given the agricultural importance of B. dorsalis, this taxonomic decision will have significant global plant biosecurity implications, affecting pest management, quarantine, international trade, postharvest treatment and basic research. Throughout the paper, we emphasize the value of independent and multidisciplinary tools in delimiting species, particularly in complicated cases involving morphologically cryptic taxa.