937 resultados para Urban Processes
Resumo:
The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality can be influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigation of four urban residential catchments and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling outcomes indicate that selecting smaller average recurrence interval (ARI) events with high intensity-short duration as the threshold for the treatment system design is the most feasible since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of rainfall events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.
Resumo:
The current state of knowledge in relation to first flush does not provide a clear understanding of the role of rainfall and catchment characteristics in influencing this phenomenon. This is attributed to the inconsistent findings from research studies due to the unsatisfactory selection of first flush indicators and how first flush is defined. The research study discussed in this thesis provides the outcomes of a comprehensive analysis on the influence of rainfall and catchment characteristics on first flush behaviour in residential catchments. Two sets of first flush indicators are introduced in this study. These indicators were selected such that they are representative in explaining in a systematic manner the characteristics associated with first flush. Stormwater samples and rainfall-runoff data were collected and recorded from stormwater monitoring stations established at three urban catchments at Coomera Waters, Gold Coast, Australia. In addition, historical data were also used to support the data analysis. Three water quality parameters were analysed, namely, total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The data analyses were primarily undertaken using multi criteria decision making methods, PROMETHEE and GAIA. Based on the data obtained, the pollutant load distribution curve (LV) was determined for the individual rainfall events and pollutant types. Accordingly, two sets of first flush indicators were derived from the curve, namely, cumulative load wash-off for every 10% of runoff volume interval (interval first flush indicators or LV) from the beginning of the event and the actual pollutant load wash-off during a 10% increment in runoff volume (section first flush indicators or P). First flush behaviour showed significant variation with pollutant types. TSS and TP showed consistent first flush behaviour. However, the dissolved fraction of TN showed significant differences to TSS and TP first flush while particulate TN showed similarities. Wash-off of TSS, TP and particulate TN during the first 10% of the runoff volume showed no influence from corresponding rainfall intensity. This was attributed to the wash-off of weakly adhered solids on the catchment surface referred to as "short term pollutants" or "weakly adhered solids" load. However, wash-off after 10% of the runoff volume showed dependency on the rainfall intensity. This is attributed to the wash-off of strongly adhered solids being exposed when the weakly adhered solids diminish. The wash-off process was also found to depend on rainfall depth at the end part of the event as the strongly adhered solids are loosened due to impact of rainfall in the earlier part of the event. Events with high intensity rainfall bursts after 70% of the runoff volume did not demonstrate first flush behaviour. This suggests that rainfall pattern plays a critical role in the occurrence of first flush. Rainfall intensity (with respect to the rest of the event) that produces 10% to 20% runoff volume play an important role in defining the magnitude of the first flush. Events can demonstrate high magnitude first flush when the rainfall intensity occurring between 10% and 20% of the runoff volume is comparatively high while low rainfall intensities during this period produces low magnitude first flush. For events with first flush, the phenomenon is clearly visible up to 40% of the runoff volume. This contradicts the common definition that first flush only exists, if for example, 80% of the pollutant mass is transported in the first 30% of runoff volume. First flush behaviour for TN is different compared to TSS and TP. Apart from rainfall characteristics, the composition and the availability of TN on the catchment also play an important role in first flush. The analysis confirmed that events with low rainfall intensity can produce high magnitude first flush for the dissolved fraction of TN, while high rainfall intensity produce low dissolved TN first flush. This is attributed to the source limiting behaviour of dissolved TN wash-off where there is high wash-off during the initial part of a rainfall event irrespective of the intensity. However, for particulate TN, the influence of rainfall intensity on first flush characteristics is similar to TSS and TP. The data analysis also confirmed that first flush can occur as high magnitude first flush, low magnitude first flush or non existence of first flush. Investigation of the influence of catchment characteristics on first flush found that the key factors that influence the phenomenon are the location of the pollutant source, spatial distribution of the pervious and impervious surfaces in the catchment, drainage network layout and slope of the catchment. This confirms that first flush phenomenon cannot be evaluated based on a single or a limited set of parameters as a number of catchment characteristics should be taken into account. Catchments where the pollutant source is located close to the outlet, a high fraction of road surfaces, short travel time to the outlet, with steep slopes can produce high wash-off load during the first 50% of the runoff volume. Rainfall characteristics have a comparatively dominant impact on the wash-off process compared to the catchment characteristics. In addition, the pollutant characteristics also should be taken into account in designing stormwater treatment systems due to different wash-off behaviour. Analysis outcomes confirmed that there is a high TSS load during the first 20% of the runoff volume followed by TN which can extend up to 30% of the runoff volume. In contrast, high TP load can exist during the initial and at the end part of a rainfall event. This is related to the composition of TP available for the wash-off.
Resumo:
Public health research consistently demonstrates the salience of neighbourhood as a determinant of both health-related behaviours and outcomes across the human life course. This paper will report on the findings from a mixed-methods Brisbane-based study that explores how mothers with primary school children from both high and low socioeconomic suburbs use the local urban environment for the purpose of physical activity. Firstly, we demonstrate findings from an innovative methodology using the geographic information systems (GIS) embedded in social media platforms on mobile phones to track locations, resource-use, distances travelled, and modes of transport of the families in real-time; and secondly, we report on qualitative data that provides insight into reasons for differential use of the environment by both groups. Spatial/mapping and statistical data showed that while the mothers from both groups demonstrated similar daily routines, the mothers from the high SEP suburb engaged in increased levels of physical activity, travelled less frequently and less distance by car, and walked more for transport. The qualitative data revealed differences in the psychosocial processes and characteristics of the households and neighbourhoods of the respective groups, with mothers in the lower SEP suburb reporting more stress, higher conflict, and lower quality relationships with neighbours.
Resumo:
In recent years a number of urban sustainability assessment frameworks are developed to better inform policy formulation and decision-making processes. This paper introduces one of these attempts in developing a comprehensive assessment tool—i.e., Micro-level Urban-ecosystem Sustainability IndeX (MUSIX). Being an indicator-based indexing model, MUSIX investigates the environmental impacts of land-uses on urban sustainability by measuring urban ecosystem components in local scale. The paper presents the methodology of MUSIX and demonstrates the performance of the model in a pilot test-bed—i.e., in Gold Coast, Australia. The model provides useful insights on the sustainability performance of the test-bed area. The parcel-scale findings of the indicators are used to identify local problems considering six main issues of urban development—i.e., hydrology; ecology; pollution; location; design, and; efficiency. The composite index score is used to propose betterment strategies to guide the development of local area plans in conjunction with the City's Planning Scheme. In overall, this study has shown that parcel-scale environmental data provides an overview of the local sustainability in urban areas as in the example of Gold Coast, which can also be used for setting environmental policy, objectives and targets.
Resumo:
The study investigated the influence of traffic and land use parameters on metal build-up on urban road surfaces. Mathematical relationships were developed to predict metals originating from fuel combustion and vehicle wear. The analysis undertaken found that nickel and chromium originate from exhaust emissions, lead, copper and zinc from vehicle wear, cadmium from both exhaust and wear and manganese from geogenic sources. Land use does not demonstrate a clear pattern in relation to the metal build-up process, though its inherent characteristics such as traffic activities exert influence. The equation derived for fuel related metal load has high cross-validated coefficient of determination (Q2) and low Standard Error of Cross-Validation (SECV) values indicates that the model is reliable, while the equation derived for wear-related metal load has low Q2 and high SECV values suggesting its use only in preliminary investigations. Relative Prediction Error values for both equations are considered to be well within the error limits for a complex system such as an urban road surface. These equations will be beneficial for developing reliable stormwater treatment strategies in urban areas which specifically focus on mitigation of metal pollution.
Resumo:
This thesis is the first comprehensive study of important parameters relating to aerosols' impact on climate and human health, namely spatial variation, particle size distribution and new particle formation. We determined the importance of spatial variation of particle number concentration in microscale environments, developed a method for particle size parameterisation and provided knowledge about the chemistry of new particle formation. This is a significant contribution to our understanding of processes behind the transformation and dynamics of urban aerosols. This PhD project included extensive measurements of air quality parameters using state of the art instrumentation at each of the 25 sites within the Brisbane metropolitan area and advanced statistical analysis.
Resumo:
For the past decade, at least, varieties of small, hand held networked instruments have appeared on the global scene, selling in record numbers, and being utilized by all manner of persons from the old to the young; children, women, men, the wealthy and the poor and in all countries. Their presences bespeak a radical shift in telecommunications infrastructure and the future of communications. They are particularly visible in urban areas where mobile transmission network infrastructure (3G, 4G, cellular and Wi-Fi) is more established and substantial, options more plentiful, and density of populations more dramatic. These end user products—I phones, cell phones, Blackberries, DSi, DS, IPads, Zooms, and others – of the mobile communications industry are the latest, hottest globalized commodities. At the same time, wirelessness, or the state of being wireless, and therefore capable of taking along one's networks, communicating from unlikely spaces, and navigating with GPS, is a complex social, political and economic communications phenomenon of early 21st century life. This thesis examines the specter of being wireless in cities. It lends the entire idea an experimentally envisioned, historical and planned context wherein personalization of media tools is seen both as a design development of corporate, artistic, and military imagination, as well as a profound social phenomenon enabling new forms of sharing, belonging, and urban community. In doing that it asserts the parameters of a new mobile space which, aside from clear benefits to humankind by way of mobility, has reinscribed numerous categories including gender. Moreover, it posits the recognition of other, more nuanced theoretical spaces for complex readings of gender and gendered use, including some instantiation of the notion of 'network' itself as a cyborgian and gendered social form. Additionally, cities are studied as places where technology is not only quickly popularized, but is connected to larger political interests, such as the reading of data, tracking of information, and the new security culture. In so doing the work has been undertaken as an urban spatial analysis and experimental ethnography, utilizing architectural, feminist, techno-utopian, industrial and theoretical literatures as discursive underpinnings from whence understandings and interpretations of mobile space, the mobile office, networked mobility, and personal media have come, linking the space of cities to specific, pioneering urban public art projects in which voice, texting and MMS have been utilized in expressions of ubiquitous networks and urban history. Through numerous examples of techno art, the thesis discusses the 'wireless city' as an emerging cultural, socially constructed economic and spatial entity, both conceived and formed through historic processes of urbanization.
Resumo:
The advanced era of knowledge-based urban development has led to an unprecedented increase in mobility of people and the subsequent growth in the new typology of agglomerated enclaves of knowledge such as urban knowledge precincts. A new role has been assigned to contemporary public spaces of these precincts to attract and retain the mobile knowledge workforce for long by creating a sense of place for them. This paper sheds light over the place making in the globalised knowledge economy world which develops a sense of permanence spatio-temporally to knowledge workers displaying a set of particular characteristics and simultaneously is process-dependent getting developed by the internal and external flows and contributing substantially in the development of the broader context it stands in relation with. The paper highlights the observations from Australia’s new world city Brisbane to outline the application of urban design as a tool to create and sustain this bipartite place making in urban knowledge precincts, which caters diverse range of social, cultural and democratic needs. It seeks to analyse the modified permeable typology of public spaces that makes it more viable and adaptive as per the changing needs of the contemporary globalised or in other words knowledge society. This research has taken an overall process-based approach reflecting how urban design is an assemblage of the encompassing processes that underlay the resultant place making. It explores how the permeable design typology of these contemporary precincts in Brisbane develops a progressive sense of place that makes them stimulating, effervescent and vibrant.
Resumo:
Urban public space in Australia and internationally, can be critically examined from a number of multidisciplinary standpoints, including human geography, urban design, planning, sociology, and public health. Viewing urban public space from a range of perspectives encourages different vantage points to emerge and questions around health, wellbeing and public space are increasingly topical and important in the broadest of terms, with public space being a key arena for physical activity, mental health, commercial, cultural and community life and the possibility of social inclusion. However, in the name of urban regeneration, programs of securitisation, ‘gentrification’ ‘creative’ and ‘smart’ city initiatives refashion public space as sites of selective inclusion and exclusion (Watson 2005; Gabrys 2014). In this context of monitoring and control procedures, in particular, children and young people’s use of space in parks, neighbourhoods, shopping malls and streets, is often viewed as a threat to social order, requiring various forms of remedial action, such as being ‘designed out’ of public space (Johnson 2014). Rarely are children and young people actively and respectfully brought into planning and governance processes and consequently many urban public spaces are essentially adult places, where control and ongoing surveillance are the key concerns (Freeman 2011, Dee 2013). There is also a political economy of public space discernable in cities like Brisbane, where ‘flagship’ infrastructure such as road tunnels take pride of place, while more humbly appointed pedestrian footpaths are often narrow, in a poor state of repair and a potential barrier to good health (Atkinson and Easthope 2009). The recent development of bikeways in Brisbane is a case in point, presenting both challenges and opportunities in being a valuable new form of public space heavily used by ‘commuter cyclists’ by day, but poorly lit and conceived, for a range of users at other times (Wyeth 2014). This paper concentrates on questions of social citizenship rights and discourses of health and wellbeing and suggests that cities, places and spaces and those who seek to use them, can be resilient in maintaining and extending democratic freedoms, calling surveillance, planning and governance systems to account (Smith 2014). The active inclusion of children and young people better informs the implementation of public policy around the design, build and governance of public space and also understandings of urban citizenship, leading to healthier, more inclusive, public space for all (Jacobs 1965).
Resumo:
Urban public spaces are sutured with a range of surveillance and sensor technologies that claim to enable new forms of ‘data based citizen participation’, but also increase the tendency for ‘function-creep’, whereby vast amounts of data are gathered, stored and analysed in a broad application of urban surveillance. This kind of monitoring and capacity for surveillance connects with attempts by civic authorities to regulate, restrict, rebrand and reframe urban public spaces. A direct consequence of the increasingly security driven, policed, privatised and surveilled nature of public space is the exclusion or ‘unfavourable inclusion’ of those considered flawed and unwelcome in the ‘spectacular’ consumption spaces of many major urban centres. In the name of urban regeneration, programs of securitisation, ‘gentrification’ and ‘creative’ and ‘smart’ city initiatives refashion public space as sites of selective inclusion and exclusion. In this context of monitoring and control procedures, in particular, children and young people’s use of space in parks, neighbourhoods, shopping malls and streets is often viewed as a threat to the social order, requiring various forms of remedial action. This paper suggests that cities, places and spaces and those who seek to use them, can be resilient in working to maintain and extend democratic freedoms and processes enshrined in Marshall’s concept of citizenship, calling sensor and surveillance systems to account. Such accountability could better inform the implementation of public policy around the design, build and governance of public space and also understandings of urban citizenship in the sensor saturated urban environment.
Resumo:
Urban public spaces are sutured with a range of surveillance and sensor technologies that claim to enable new forms of ‘data based citizen participation’, but also increase the tendency for ‘function-creep’, whereby vast amounts of data are gathered, stored and analysed in a broad application of urban surveillance. This kind of monitoring and capacity for surveillance connects with attempts by civic authorities to regulate, restrict, rebrand and reframe urban public spaces. A direct consequence of the increasingly security driven, policed, privatised and surveilled nature of public space is the exclusion or ‘unfavourable inclusion’ of those considered flawed and unwelcome in the ‘spectacular’ consumption spaces of many major urban centres. This paper suggests that cities, places and spaces and those who seek to use them, can be resilient in working to maintain and extend democratic freedoms and processes enshrined in Marshall’s concept of citizenship, calling sensor and surveillance systems to account. Such accountability could better inform the implementation of public policy around the design, build and governance of public space and also understandings of urban citizenship in the sensor saturated urban environment.
Resumo:
Heavy metals that are built-up on urban impervious surfaces such as roads are transported to urban water resources through stormwater runoff. Therefore, it is essential to understand the predominant pathways of heavy metals to the build-up on roads in order to develop suitable pollution mitigation strategies to protect the receiving water environment. The study presented in this paper investigated the sources and transport pathways of manganese, lead, copper, zinc and chromium, which are heavy metals commonly present in urban road build-up. It was found that manganese and lead are contributed to road build-up primarily by direct deposition due to the re-suspension of roadside soil by wind turbulence, while traffic is the predominant source of copper, zinc and chromium to the atmosphere and road build-up. Atmospheric deposition is also the major transport pathway for copper and zinc, and for chromium, direct deposition by traffic sources is the predominant pathway.
Resumo:
Traffic is one of the prominent sources of polycyclic aromatic hydrocarbons (PAHs) and road surfaces are the most critical platform for stormwater pollution. Build-up of pollutants on road surfaces was the focus of this research study. The study found that PAHs build-up on road surfaces primarily originate from traffic activities, specifically gasoline powered vehicles. Other sources such as diesel vehicles, industrial oil combustion and incineration were also found to contribute to the PAH build-up. Additionally, the study explored the linkages between concentrations of PAHs and traffic characteristics such as traffic volume, vehicle mix and traffic flow. While traffic congestion was found to be positively correlated with 6- ring and 5- ring PAHs in road build-up, it was negatively correlated with 3-ring and 4 ring PAHs. The absence of positive correlation between 3-ring and 4-ring PAHs and traffic parameters is attributed to the propensity of these relatively volatile PAHs to undergo re-suspension and evaporation. The outcomes of this study are expected to contribute effective transport and land use planning for the prevention of PAH pollution in the urban environment.
Resumo:
Knowledge of the pollutant build-up process is a key requirement for developing stormwater pollution mitigation strategies. In this context, process variability is a concept which needs to be understood in-depth. Analysis of particulate build-up on three road surfaces in an urban catchment confirmed that particles <150µm and >150µm have characteristically different build-up patterns, and these patterns are consistent over different field conditions. Three theoretical build-up patterns were developed based on the size-fractionated particulate build-up patterns, and these patterns explain the variability in particle behavior and the variation in particle-bound pollutant load and composition over the antecedent dry period. Behavioral variability of particles <150µm was found to exert the most significant influence on the build-up process variability. As characterization of process variability is particularly important in stormwater quality modeling, it is recommended that the influence of behavioral variability of particles <150µm on pollutant build-up should be specifically addressed. This would eliminate model deficiencies in the replication of the build-up process and facilitate the accounting of the inherent process uncertainty, and thereby enhance the water quality predictions.
Resumo:
Urbanisation significantly changes the characteristics of a catchment as natural areas are transformed to impervious surfaces such as roads, roofs and parking lots. The increased fraction of impervious surfaces leads to changes to the stormwater runoff characteristics, whilst a variety of anthropogenic activities common to urban areas generate a range of pollutants such as nutrients, solids and organic matter. These pollutants accumulate on catchment surfaces and are removed and trans- ported by stormwater runoff and thereby contribute pollutant loads to receiving waters. In summary, urbanisation influences the stormwater characteristics of a catchment, including hydrology and water quality. Due to the growing recognition that stormwater pollution is a significant environmental problem, the implementation of mitigation strategies to improve the quality of stormwater runoff is becoming increasingly common in urban areas. A scientifically robust stormwater quality treatment strategy is an essential requirement for effective urban stormwater management. The efficient design of treatment systems is closely dependent on the state of knowledge in relation to the primary factors influencing stormwater quality. In this regard, stormwater modelling outcomes provide designers with important guidance and datasets which significantly underpin the design of effective stormwater treatment systems. Therefore, the accuracy of modelling approaches and the reliability modelling outcomes are of particular concern. This book discusses the inherent complexity and key characteristics in the areas of urban hydrology and stormwater quality, based on the influence exerted by a range of rainfall and catchment characteristics. A comprehensive field sampling and testing programme in relation to pollutant build-up, an urban catchment monitoring programme in relation to stormwater quality and the outcomes from advanced statistical analyses provided the platform for the knowledge creation. Two case studies and two real-world applications are discussed to illustrate the translation of the knowledge created to practical use in relation to the role of rainfall and catchment characteristics on urban stormwater quality. An innovative rainfall classification based on stormwater quality was developed to support the effective and scientifically robust design of stormwater treatment systems. Underpinned by the rainfall classification methodology, a reliable approach for design rainfall selection is proposed in order to optimise stormwater treatment based on both, stormwater quality and quantity. This is a paradigm shift from the common approach where stormwater treatment systems are designed based solely on stormwater quantity data. Additionally, how pollutant build-up and stormwater runoff quality vary with a range of catchment characteristics was also investigated. Based on the study out- comes, it can be concluded that the use of only a limited number of catchment parameters such as land use and impervious surface percentage, as it is the case in current modelling approaches, could result in appreciable error in water quality estimation. Influential factors which should be incorporated into modelling in relation to catchment characteristics, should also include urban form and impervious surface area distribution. The knowledge created through the research investigations discussed in this monograph is expected to make a significant contribution to engineering practice such as hydrologic and stormwater quality modelling, stormwater treatment design and urban planning, as the study outcomes provide practical approaches and recommendations for urban stormwater quality enhancement. Furthermore, this monograph also demonstrates how fundamental knowledge of stormwater quality processes can be translated to provide guidance on engineering practice, the comprehensive application of multivariate data analyses techniques and a paradigm on integrative use of computer models and mathematical models to derive practical outcomes.