973 resultados para United States. Great Lakes Basin Commission
Resumo:
El propósito de la presente monografía es determinar la relación entre la degradación y navegación en los Grandes Lagos en la noción de seguridad ambiental de Estados Unidos y Canadá en un entorno de interdependencia entre 1995 - 2000. En ese sentido, se busca determinar como los recursos de poder de Canadá y Estados Unidos en la relación degradación-navegación transforma la noción de seguridad ambiental. De este modo, se analiza el concepto de seguridad ambiental desde la navegación, elemento esencial para entender la relación bilateral dentro del sistema de los Grandes Lagos. Esta investigación de tipo cualitativo que responde a las variables de la seguridad ambiental planteadas por Barry Buzan, Thomas Homer-Nixon, y Stephan Libiszewski, y a la teoría de la Interdependencia Compleja por Robert Keohane y Joseph Nye, pretende avanzar hacia la complejización de la dimensión ambiental lejos de la tradicional definición antropocéntrica.
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía
Resumo:
Simulations of forest stand dynamics in a modelling framework including Forest Vegetation Simulator (FVS) are diameter driven, thus the diameter or basal area increment model needs a special attention. This dissertation critically evaluates diameter or basal area increment models and modelling approaches in the context of the Great Lakes region of the United States and Canada. A set of related studies are presented that critically evaluate the sub-model for change in individual tree basal diameter used in the Forest Vegetation Simulator (FVS), a dominant forestry model in the Great Lakes region. Various historical implementations of the STEMS (Stand and Tree Evaluation and Modeling System) family of diameter increment models, including the current public release of the Lake States variant of FVS (LS-FVS), were tested for the 30 most common tree species using data from the Michigan Forest Inventory and Analysis (FIA) program. The results showed that current public release of the LS-FVS diameter increment model over-predicts 10-year diameter increment by 17% on average. Also the study affirms that a simple adjustment factor as a function of a single predictor, dbh (diameter at breast height) used in the past versions, provides an inadequate correction of model prediction bias. In order to re-engineer the basal diameter increment model, the historical, conceptual and philosophical differences among the individual tree increment model families and their modelling approaches were analyzed and discussed. Two underlying conceptual approaches toward diameter or basal area increment modelling have been often used: the potential-modifier (POTMOD) and composite (COMP) approaches, which are exemplified by the STEMS/TWIGS and Prognosis models, respectively. It is argued that both approaches essentially use a similar base function and neither is conceptually different from a biological perspective, even though they look different in their model forms. No matter what modelling approach is used, the base function is the foundation of an increment model. Two base functions – gamma and Box-Lucas – were identified as candidate base functions for forestry applications. The results of a comparative analysis of empirical fits showed that quality of fit is essentially similar, and both are sufficiently detailed and flexible for forestry applications. The choice of either base function in order to model diameter or basal area increment is dependent upon personal preference; however, the gamma base function may be preferred over the Box-Lucas, as it fits the periodic increment data in both a linear and nonlinear composite model form. Finally, the utility of site index as a predictor variable has been criticized, as it has been widely used in models for complex, mixed species forest stands though not well suited for this purpose. An alternative to site index in an increment model was explored, using site index and a combination of climate variables and Forest Ecosystem Classification (FEC) ecosites and data from the Province of Ontario, Canada. The results showed that a combination of climate and FEC ecosites variables can replace site index in the diameter increment model.
Resumo:
Potential Desiccation Polygons (PDPs), tens to hundreds of meters in size, have been observed in numerous regions on Mars, particularly in ancient (>3Gyr old) terrains of inferred paleolacustrine/playa geologic setting, and in association with hydrous minerals such as smectites. Therefore, a better understanding of the conditions in which large desiccation polygons form could yield unique insight into the ancient climate on Mars. Many dried lakebeds/playas in western United States display large (>50m wide) desiccation polygons, which we consider to be analogues for PDPs on Mars. Therefore, we have carried out fieldwork in seven of these dried lakes in San Bernardino and the Death Valley National Park regions complemented with laboratory and spectral analysis of collected samples. Our study shows that the investigated lacustrine/playa sediments have (a) a soil matrix containing 40-75% clays and fine silt (by volume) where the clay minerals are dominated by illite/muscovite followed by smectite, (b) carbonaceous mineralogy with variable amounts of chloride and sulfate salts, and significantly, (c) roughly similar spectral signatures in the visible-near-infrared (VIS-NIR) range. We conclude that the development of large desiccation fractures is consistent with water table retreat. In addition, the comparison of the mineralogical to the spectral observations further suggests that remote sensing VIS-NIR spectroscopy has its limitations for detailed characterization of lacustrine/playa deposits. Finally, our results imply that the widespread distribution of PDPs on Mars indicates global or regional climatic transitions from wet conditions to more arid ones making them important candidate sites for future in situ missions.
Resumo:
by Edmund D. Morel
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A map of the north west parts of the United States of America, [by] John Fitch. It was published in 1785. Scale [ca. 1:3,000,000]. Covers the Old Northwest from the Great Lakes to Kentucky and the Mississippi River to the Allegany River and a portion of Lake Ontario. The image inside the map neatline is georeferenced to the surface of the earth and fit to the USA Contiguous Albers Equal Area Conic projection (Meters). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as human settlements, forts, Native American lands, roads, drainage, proposed state boundaries, and more. Relief shown by landform drawing. Includes descriptive notes. This layer is part of a selection of digitally scanned and georeferenced historic maps of New England from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.