829 resultados para Uniaxial hot pressing
Resumo:
The Nb-Cu pseudoalloys present themselves as potential substitutes for the alloys from a well known system and already commercially applied, as the W-Cu alloys, used in applications such as heat sinks, electrical contacts and coils for the generation of high magnetic fields. Because it is an immiscible system, where there is mutual insolubility and low wettability of the liquid Cu on the Nb surface, the processing route used in this work was the Powder Metallurgy. Two Nb alloys were used, with additions of 10% and 20% in weight of Cu, and times of 20, 30 and 40 hours for the high energy milling of the starting powders. The milling evolution of the powders is presented through the characterization techniques, such as the LASER diffraction for particle size, XRD, SEM, EDS, DSC, dilatometry, TEM and chemical analysis. After the milling, portions of the loads were submitted to the annealing heat treatment. The process used for the samples consolidation was the hot pressing, which has been applied both on some milled powders samples, as on the annealed powders. Subsequent heat treatments were performed in the samples at temperatures of 1000ºC (solid phase) and 1100ºC (in the Cu liquid phase). All sets of consolidated samples, and also the two sets of the heat treated, were analyzed by XRD, SEM, EDS, density and Vickers microhardness. Moreover, other Nb powder samples with 10% and 20% in weight of Cu obtained by simple mechanical mixing, were consolidated, thermally treated and characterized with the same techniques applied to the others, and the results were compared among themselves. Despite the difficulty of consolidation and densification of the two pseudoalloys of the Nb-Cu system of this study, on the route that passes through the HEM, samples were obtained with densities around 90% of the theoretical density. And, on the processing route of which were only mixed, the values reached up to 97%. Therefore, in this work are also emphasized the processes that made possible these results.
Resumo:
Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4769889]
Resumo:
The effects of electron temperature on the radiation fields and the resistance of a short dipole antenna embedded in a uniaxial plasma have been studied. It is found that for ω < ω_p the antenna excites two waves, a slow wave and a fast wave. These waves propagate only within a cone whose axis is parallel to the biasing magnetostatic field B_o and whose semicone angle is slightly less than sin ^(-1) (ω/ω_p). In the case of ω > ω_p the antenna excites two separate modes of radiation. One of the modes is the electromagnetic mode, while the other mode is of hot plasma origin. A characteristic interference structure is noted in the angular distribution of the field. The far fields are evaluated by asymptotic methods, while the near fields are calculated numerically. The effects of antenna length ℓ, electron thermal speed, collisional and Landau damping on the near field patterns have been studied.
The input and the radiation resistances are calculated and are shown to remain finite for nonzero electron thermal velocities. The effect of Landau damping and the antenna length on the input and radiation resistances has been considered.
The radiation condition for solving Maxwell's equations is discussed and the phase and group velocities for propagation given. It is found that for ω < ω_p in the radial direction (cylindrical coordinates) the power flow is in the opposite direction to that of the phase propagation. For ω > ω_p the hot plasma mode has similar characteristics.
Resumo:
This study investigates the influence of process parameters on the fluidised hot melt granulation of lactose and PEG 6000, and the subsequent tablet pressing of the granules. Granulation experiments were performed to assess the effect of granulation time and binder content of the feed on the resulting granule properties such as mass mean granule size, size distribution, granule fracture stress, and granule porosity. These data were correlated using the granule growth regime model. It was found that the dominant granule growth mechanisms in this melt granulation system were nucleation followed by steady growth (PEG 10–20% w/w). However, with binder contents greater than 20% w/w, the granulation mechanism moved to the “over-wet massing” regime in which discrete granule formation could not be obtained. The granules produced in the melt fluidised bed process were subsequently pressed into tablets using an industrial tablet press. The physical properties of the tablets: fracture stress, disintegration time and friability were assessed using industry standards. These analyses indicated that particle size and binder content of the initial granules influenced the mechanical properties of the tablets. It was noted that a decrease in initial granule size resulted in an increase in the fracture stress of the tablets formed.
Resumo:
It has been demonstrated that mechanical alloying and subsequent consolidation by hot isostatic pressing (HIP) is a successful route to produce dispersion strengthened W alloys with properties satisfying the design requirements of particular plasma facing components in the fusion reactor. However, the presence of the alloying element as a phase filling large interstices between W particles appears to reduce the mechanical properties of these alloys. In order to limit this phase separation induced by the HIP treatment and the detrimental effects on the mechanical properties, the enhancement of the mechanical alloying process, and the effect of a postconsolidation heat treatment in an reducing atmosphere, have been investigated.
Resumo:
W–2Ti and W–1TiC alloys were produced by mechanical alloying and consolidation by hot isostatic pressing. The composition and microstructural characteristics of these alloys were studied by X-ray diffraction, energy dispersion spectroscopy and scanning electron microscopy. The mechanical behavior of the consolidated alloys was characterized by microhardness measurements and three point bending tests. The mechanical characteristics of the W–2Ti alloy appear to be related to solution hardening. In W–1TiC, the residual porosity should be responsible for the poor behavior observed in comparison with W–2Ti.
Resumo:
Work performed at the Sylvania-Corning Nuclear Corporation under contract AT-30-1 GEN-366 with the Division of Reactor Development.
Resumo:
We have used the fusible tin coating method to detect shear band heating in amorphous Zr57Ti5Cu20Ni8Al10 loaded under quasi-static uniaxial compression. High-rate load data allowed a precise determination of the duration of shearing events and final fracture. When loading was halted prior to fracture we saw no evidence of melted tin despite the presence of shear offsets up to 6μm on some shear bands. Samples loaded to fracture showed evidence of tin melting near the fracture surface. We attribute the difference to the duration of the events, which is much longer for shear banding (milliseconds) than for fracture (microseconds).
Resumo:
Self-passivating tungsten based alloys will provide a major safety advantage compared to pure tungsten when used as first wall armor of future fusion reactors, due to the formation of a protective oxide layer which prevents the formation of volatile and radioactive WO3 in case of a loss of coolant accident with simultaneous air ingress. Bulk WCr10Ti2 alloys were manufactured by two different powder metallurgical routes: (1) mechanical alloying (MA) followed by hot isostatic pressing (HIP) of metallic capsules, and (2) MA, compaction, pressureless sintering in H2 and subsequent HIPing without encapsulation. Both routes resulted in fully dense materials with homogeneous microstructure and grain sizes of 300 nm and 1 μm, respectively. The content of impurities remained unchanged after HIP, but it increased after sintering due to binder residue. It was not possible to produce large samples by route (2) due to difficulties in the uniaxial compaction stage. Flexural strength and fracture toughness measured on samples produced by route (1) revealed a ductile-to-brittle-transition temperature (DBTT) of about 950 °C. The strength increased from room temperature to 800 °C, decreasing significantly in the plastic region. An increase of fracture toughness is observed around the DBTT.
Resumo:
"October 5, 1965."
Resumo:
The hot isostatic pressing process has been applied at temperatures up to 1500°C for the fabrication of high temperature fuel rods composed of UO₂ clad in columbium and UO₂ in iron-aluminum type alloy. The fused UO₂ powder apparently becomes quite plastic at temperatures above 1200°C and can be isostatically compacted at 1500°C to 98% of its theoretical density. Columbian tubes particularly lend themselves to the fabrication of fuel rods by simultaneously compacting and cladding UO₂ powders in the tubes, but the cast iron-aluminum type alloy that was used was unsatisfactory because of its brittleness.
Resumo:
Climate change is thought to be one of the most pressing environmental problems facing humanity. However, due in part to failures in political communication and how the issue has been historically defined in American politics, discussions of climate change remain gridlocked and polarized. In this dissertation, I explore how climate change has been historically constructed as a political issue, how conflicts between climate advocates and skeptics have been communicated, and what effects polarization has had on political communication, particularly on the communication of climate change to skeptical audiences. I use a variety of methodological tools to consider these questions, including evolutionary frame analysis, which uses textual data to show how issues are framed and constructed over time; Kullback-Leibler divergence content analysis, which allows for comparison of advocate and skeptical framing over time; and experimental framing methods to test how audiences react to and process different presentations of climate change. I identify six major portrayals of climate change from 1988 to 2012, but find that no single construction of the issue has dominated the public discourse defining the problem. In addition, the construction of climate change may be associated with changes in public political sentiment, such as greater pessimism about climate action when the electorate becomes more conservative. As the issue of climate change has become more polarized in American politics, one proposed causal pathway for the observed polarization is that advocate and skeptic framing of climate change focuses on different facets of the issue and ignores rival arguments, a practice known as “talking past.” However, I find no evidence of increased talking past in 25 years of popular newsmedia reporting on the issue, suggesting both that talking past has not driven public polarization or that polarization is occurring in venues outside of the mainstream public discourse, such as blogs. To examine how polarization affects political communication on climate change, I test the cognitive processing of a variety of messages and sources that promote action against climate change among Republican individuals. Rather than identifying frames that are powerful enough to overcome polarization, I find that Republicans exhibit telltale signs of motivated skepticism on the issue, that is, they reject framing that runs counter to their party line and political identity. This result suggests that polarization constrains political communication on polarized issues, overshadowing traditional message and source effects of framing and increasing the difficulty communicators experience in reaching skeptical audiences.