843 resultados para Uniaxial compressive strength


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bone void fillers that can enhance biological function to augment skeletal repair have significant therapeutic potential in bone replacement surgery. This work focuses on the development of a unique microporous (0.5-10 mu m) marine-derived calcium phosphate bioceramic granule. It was prepared fro Corallina officinalis, a mineralized red alga, using a novel manufacturing process. This involved thermal processing, followed by a low pressure-temperature chemical synthesis reaction. The study found that the ability to maintain the unique algal morphology was dependent on the thermal processing conditions. This study investigates the effect of thermal heat treatment on the physiochemical properties of the alga. Thermogravimetric analysis was used to monitor its thermal decomposition. The resultant thermograms indicated the presence of a residual organic phase at temperatures below 500 degrees C and an irreversible solid-state phase transition from mg-rich-calcite to calcium oxide at temperatures over 850 degrees C. Algae and synthetic calcite were evaluated following heat treatment in an air-circulating furance at temperatures ranging from 400 to 800 degrees C. The highest levels of mass loss occurred between 400-500 degrees C and 700-800 degrees C, which were attributed to the organic and carbonate decomposition respectively. The changes in mechanical strength were quantified using a simple mechanical test, which measured the bulk compressive strength of the algae. The mechanical test used may provide a useful evaluation of the compressive properties of similar bone void fillers that are in granular form. The study concluded that soak temperatures in the range of 600 to 700 degrees C provided the optimum physiochemical properties as a precursor to conversion to hydroxyapatite (HA). At these temperatures, a partial phase transition to calcium oxide occurred and the original skeletal morphology of the alga remained intact.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last 50 years, many bridges have been built as composite structures with decks of reinforced concrete that are supported by longitudinal steel beams. The presence of the longitudinal steel beams and the unloaded area of concrete slab cause the loaded deck slabs to be restrained against lateral expansion. As a result, a compressive membrane thrust is developed. In experimental tests, the authors built a series of one-third scale steel-concrete composite bridge models with several varying structural parameters, including concrete compressive strength, reinforcement percentage, and the size of steel supporting beams. After comparing the results of different models, the influence of these structural parameters on the amount of compressive membrane action in the deck slab was evaluated. Furthermore, the improvement of an existing theoretical model provided accurate predictions for the loading-carrying capacities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Assembling aircraft stiffened panels using friction stir welding offers potential to reduce fabrication time in comparison to current mechanical fastener assembly, making it economically feasible to select structurally desirable stiffener pitching and novel panel configurations. With such a departure from the traditional fabrication process, much research has been conducted on producing strong reliable welds, with less examination of the impact of welding process residual effects on panel structural behaviour and the development of appropriate design methods. This article significantly expands the available panel level compressive strength knowledge, demonstrating the strength potential of a welded aircraft panel with multiple lateral and longitudinal stiffener bays. An accompanying computational study has determined the most significant process residual effects that influence panel strength and the potential extent of panel degradation. The experimental results have also been used to validate a previously published design method, suggesting accurate predictions can be made if the conventional aerospace design methods are modified to acknowledge the welding altered panel properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This limited experimental investigation examined the relationships between the compressive strengths of cubes, cylinders, cores and the estimated compressive strengths derived from pull-off tests for a relatively low-strength structural-grade concrete (<35 N/mm2). Test specimens were cast and tested at 7, 14, 28, 56 and 84 days. The relationships of the trends of the test results to the trends of results of standard cube specimens and standard cylinder specimens were compared. It was found that the mean strength of each type of specimen tended to increase as a function of the natural logarithm of the specimen age. The mean strength of cylinders of length/diameter ratio 2.0 was found to be slightly greater (by about 7.5%) than the generally accepted value of 80% of the mean cube strength. Core results were corrected using correction factors defined in BS 6089 and the UK national annex to BS EN 12504-1. The mean corrected cube strength of cores taken from cubes was approximately 12% greater than the mean companion cube strength. The mean corrected cylinder strength of cores taken from cubes was approximately 5% greater than the mean companion cylinder strength. The potential cube and cylinder strengths of cores taken from slabs cured under different environmental conditions correlated well with companion cube and cylinder strengths respectively at 28 days. The pull-off test results gave a variable but, on average, slightly conservative estimate of the cube compressive strength of the relatively low-strength structural-grade concrete, using a simple general linear estimated compressive cube strength to tensile strength correlation factor of 10.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arching or compressive membrane action (CMA) in reinforced concrete slabs occurs as a result of the great difference between the tensile and compressive strength of concrete. Cracking of the concrete causes a migration of the neutral axis which is accompanied by in-plane expansion of the slab at its boundaries. If this natural tendency to expand is restrained, the development of arching action enhances the strength of the slab. The term arching action is normally used to describe the arching phenomenon in one-way spanning slabs and compressive membrane action is normally used to describe the arching phenomenon in two-
way spanning slabs. This encyclopedic article presents the background to the discovery of the phenomenon of arching action and presents a factual history of the approaches to the treatment of arching action in the United Kingdom and North American bridge deck design codes. The article summarises the theoretical methodology used in the United Kingdom Design Manual for Roads and Bridges, BD81/02, which was based on the work by Kirkpatrick, Rankin & Long at Queen's University Belfast.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the results of an experimental investigation on compressive strength of unfired compressed brick obtained with coal combustion residues (CCRs) produced by the Niger Coal Society. Preliminary physical and optical (XRD and SEM) characterisation of coal slag, including lixiviation tests, have been carried out. Cement powder, lateritic clayey soil and sand have been chosen as stabilizing agents for bricks. 12 dosages have been tested and about 300 bricks have been produced with a hand-operated press. Results show uniaxial compressive strengths (UCSs) ranging from 4 MPa to 27 MPa for the highest cement stabilisation ratio. UCS higher than 7.5 MPa have been observed for stabilisation with 20% of laterite +10% cement after 45 days of curing. Obtained bricks showed good mechanical resistance and low weight. No health threat has been detected for the obtained samples. Study developments are oriented towards the analysis of Pozzolanic properties of CCRs, properties of hydrated lime stabilisation, thermal properties and durability assessment.© 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Niger Coal Society (Societé Nigérienne de Charbon – SONICHAR) produces electricity for local consumption in Tefereyre, 75 km north-west from Agadez, Niger. The coal combustion residuals production is about 150,000 tons per year. In order to reduce this environmental burden and to valorize these by-products, a study focusing on their physical and chemical features as well as on the mechanical resistance of compressed brick has been undertaken. Physical characterization of coal slag, chemical and lixiviation tests have been carried out, assessing the material main parameters, verifying the presence of hazardous composites and elements and comparing the obtained results with the findings of an in-deep literary review. Cement powder has been chosen as stabilizing agent as a preliminary option. Four different dosages have been tested and bricks have been produced with a hand-operated press. Compressive strength has been tested at different days of curing. Results show remarkable uniaxial compressive strengths (UCS) for all the mixes after cure, ranging from 4MPa up to more than 20MPa for the highest stabilization ratio. UCS higher than 5MPa have been observed for 20% and 30% cement stabilization ratios after only 7 days of cure, reaching respectively about 11MPa and 13MPa after 45 days. In conclusion obtained bricks show good mechanical resistance and low weight. No health threat has been detected from the obtained sample. Study developments are oriented towards the feasibility of the utilization of low-cost, locally available stabilization means, notably clay and cohesive soils, and on thermal properties assessment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of colloidal nanosilica on the fresh and rheological parameters, plastic shrinkage, heat of hydration, and compressive strength of cement-based grouts is investigated in this paper. The fresh and rheological properties were evaluated by the minislump flow, Marsh cone flow time, Lombardi plate cohesion meter, yield value, and plastic viscosity. The key parameters investigated were the dosages of nanosilica and superplasticizer and temperature of mixing water. Statistical models and isoresponse curves were developed to capture the significant trends. The dosage of nanosilica had a significant effect on the results. The increase in the dosage of nanosilica led to increasing the values of flow time, plate cohesion meter, yield stress, plastic viscosity, heat of hydration at 1 day and 3 days, and compressive strength at 1 day, while reducing the minislump, plastic shrinkage up 24 h, and compressive strength at 3, 7, and 28 days. Conversely, the increase in the dosage of superplasticizer led to decreasing the values of flow time, plate cohesion meter, yield stress, plastic viscosity, heat of hydration at 1 day and 3 days, and compressive strength at 1 day, while increasing the minislump, plastic shrinkage, and compressive strength at 3 and 7 days. Increasing the temperature of mixing water led to a notable increase in the results of minislump, flow time, plastic viscosity, heat of hydration at 3 days, and compressive strength at 1 day, while it reduced the plate cohesion, compressive strength at 3, 7, and 28 days. The statistical models developed in this study can facilitate optimizing the mixture proportions of grouts for target performance by reducing the number of trial batches needed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For sustainability considerations, the use of recycled aggregate in concrete has attracted many interests in the research community. One of the main concerns for using such concrete in buildings is its spalling in fire. This may be alleviated by adding steel fibers to form steel fiber reinforced recycled aggregate concrete (SFRAC). This paper presents an experimental investigation into the compressive properties of SFRAC cylinders after exposure to elevated temperatures, including the compressive strength, Young's modulus (stiffness), stress-strain curve and energy absorption capacity (toughness). The effects of two parameters, namely steel fiber volume content (0%, 0.5%, 1%, 1.5%) and temperature (room temperature, 200 °C, 400 °C and 600 °C) on the compressive mechanical properties of concrete were investigated. The test results show that both compressive strength and stiffness of the concrete are significantly reduced after exposure to high temperatures. The addition of steel fibers is helpful in preventing spalling, and significantly improves the ductility and the cracking behavior of recycled aggregate concrete (RAC) after exposure to high temperatures, which is favorable for the application of RAC in building construction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An adhesive elasto-plastic contact model for the discrete element method with three dimensional non-spherical particles is proposed and investigated to achieve quantitative prediction of cohesive powder flowability. Simulations have been performed for uniaxial consolidation followed by unconfined compression to failure using this model. The model has been shown to be capable of predicting the experimental flow function (unconfined compressive strength vs. the prior consolidation stress) for a limestone powder which has been selected as a reference solid in the Europe wide PARDEM research network. Contact plasticity in the model is shown to affect the flowability significantly and is thus essential for producing satisfactory computations of the behaviour of a cohesive granular material. The model predicts a linear relationship between a normalized unconfined compressive strength and the product of coordination number and solid fraction. This linear relationship is in line with the Rumpf model for the tensile strength of particulate agglomerate. Even when the contact adhesion is forced to remain constant, the increasing unconfined strength arising from stress consolidation is still predicted, which has its origin in the contact plasticity leading to microstructural evolution of the coordination number. The filled porosity is predicted to increase as the contact adhesion increases. Under confined compression, the porosity reduces more gradually for the load-dependent adhesion compared to constant adhesion. It was found that the contribution of adhesive force to the limiting friction has a significant effect on the bulk unconfined strength. The results provide new insights and propose a micromechanical based measure for characterising the strength and flowability of cohesive granular materials. 

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research has shown that fibre reinforced polymer (FRP) wraps are effective for strengthening concrete columns for increased axial and flexural load and deformation capacity, and this technique is now used around the world. The experimental study presented in this paper is focused on the mechanics of FRP confined concrete, with a particular emphasis on the influence of the unconfined concrete compressive strength on confinement effectiveness and hoop strain efficiency. An experimental programme was undertaken to study the compressive strength and stress-strain behaviour of unconfined and FRP confined concrete cylinders of different concrete strength but otherwise similar mix designs, aggregates, and constituents. This was accomplished by varying only the water-to-cement ratio during concrete mixing operations. Through the use of high-resolution digital image correlation to measure both axial and hoop strains, the observations yield insights into the mechanics of FRP confinement of concretes of similar composition but with varying unconfined concrete compressive strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Researches are always in quest for finding innovative methods for ground improvement using sustainable and environmental friendly solutions. Theproduction of large quantity of biowastes all over the world faces serious problems of handling and disposal. Coir pith is a biowaste from coir industry and sugarcane baggase is another biowaste obtained after extractingjuice from sugar cane. So the present study is an investigation into the effect of coir pith and sugarcane baggase on some geotechnical properties of red earth. The investigation includes study on variation of properties such as O.M.C, maximum dry density, C.B.R. values,unconfined compressive strength and permeability when these materials are included in soil. Several conclusions are arrived at, on the basis of the experiments conducted and it may be helpful for predicting the behavior of such soil matrix

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Am Fachgebiet Massivbau (Institut für Konstruktiven Ingenieurbau – IKI) des Fachbereichs Bauingenieurwesen der Universität Kassel wurden Bauteilversuche an zweiaxial auf Druck-Zug belasteten, faserfreien und faserverstärkten Stahlbetonscheiben durchgeführt. Dabei wurden die Auswirkungen der Querzugbeanspruchung und der Rissbildung auf die Druckfestigkeit, auf die Stauchung bei Erreichen der Höchstlast sowie auf die Drucksteifigkeit des stabstahl- und faserbewehrten Betons an insgesamt 56 faserfreien und faserverstärkten Beton- und Stahlbetonscheiben untersucht. Auf der Grundlage der experimentell erhaltenen Ergebnisse wird ein Vorschlag zur Abminderung der Druckfestigkeit des gerissenen faserfreien und faserbewehrten Stahlbetons in Abhängigkeit der aufgebrachten Zugdehnung formuliert. Die Ergebnisse werden den in DIN 1045-1 [D4], Eurocode 2 [E3, E4], CEB-FIP Model Code 1990 [C1] und ACI Standard 318-05 [A1] angegebenen Bemessungsregeln für die Druckstrebenfestigkeit des gerissenen Stahlbetons gegenübergestellt und mit den Untersuchungen anderer Wissenschaftler verglichen. Die bekannten Widersprüche zwischen den Versuchsergebnissen, den vorgeschlagenen Modellen und den Regelwerken aus U.S.A., Kanada und Europa können dabei weitgehend aufgeklärt werden. Für nichtlineare Verfahren der Schnittgrößenermittlung und für Verformungsberechnungen wird ein Materialmodell des gerissenen faserfreien und faserbewehrten Stahlbetons abgeleitet. Hierzu wird die für einaxiale Beanspruchungszustände gültige Spannungs-Dehnungs-Linie nach Bild 22 der DIN 1045-1 auf den Fall der zweiaxialen Druck-Zug-Beanspruchung erweitert.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A discrete element model is used to study shear rupture of sea ice under convergent wind stresses. The model includes compressive, tensile, and shear rupture of viscous elastic joints connecting floes that move under the action of the wind stresses. The adopted shear rupture is governed by Coulomb’s criterion. The ice pack is a 400 km long square domain consisting of 4 km size floes. In the standard case with tensile strength 10 times smaller than the compressive strength, under uniaxial compression the failure regime is mainly shear rupture with the most probable scenario corresponding to that with the minimum failure work. The orientation of cracks delineating formed aggregates is bimodal with the peaks around the angles given by the wing crack theory determining diamond-shaped blocks. The ice block (floe aggregate) size decreases as the wind stress gradient increases since the elastic strain energy grows faster leading to a higher speed of crack propagation. As the tensile strength grows, shear rupture becomes harder to attain and compressive failure becomes equally important leading to elongation of blocks perpendicular to the compression direction and the blocks grow larger. In the standard case, as the wind stress confinement ratio increases the failure mode changes at a confinement ratio within 0.2–0.4, which corresponds to the analytical critical confinement ratio of 0.32. Below this value, the cracks are bimodal delineating diamond shape aggregates, while above this value failure becomes isotropic and is determined by small-scale stress anomalies due to irregularities in floe shape.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The production of waste from urban and industrial activities is one of the factors of environmental contamination and has aroused attention of the scientific community, in the sense of its reuse. On the other hand, the city of Salvador/Ba, with approximately 262 channels, responsible for storm water runoff, produces every year, by the intervention of cleaning and clearing channels, a significant volume of sediments (dredged mud), and thus an appropriate methodology for their final destination. This study aims to assess the influence of incorporation of these tailings in arrays of clay for production of interlocked block ceramic, also known as ceramic paver. All the raw materials from the metropolitan region of Salvador (RMS) were characterized by x-ray fluorescence, x-ray diffraction, thermal analysis (TG and TDA), particle size analysis and dilatometry. With the use of statistical experimental planning technique, ternary diagram was defined in the study region and the analyzed formulations. The specimens were prepared with dimensions of 60x20x5mm³, by uniaxial pressing of 30 MPa and after sintering at temperatures of 900°, 1000º and 1100ºC the technological properties were evaluated: linear shrinkage, water absorption, apparent porosity, apparent specifies mass, flexural rupture and module. For the uniaxial compression strength used cylindrical probe body with Ø 50 mm. The standard mass (MP) was prepared with 90% by weight of clay and 10% by weight of Channel sediment (SCP), not being verified significant variations in the properties of the final product. With the incorporation of 10% by weight of manganese residue (PFM) and 10% by weight of the Ceramic waste (RCB) in the mass default, in addition to adjusting the plasticity due to less waste clay content, provided increased linear firing shrinkage, due the significant concentration of K2O, forming liquid phase at low temperature, contributing to decreased porosity and mechanical resistance, being 92,5 MPa maximum compressive strength verified. After extract test leachate and soluble, the piece containing 10% of the PFM, was classified as non-hazardous and inert material according to NBR10004/04 ABNT. The results showed the feasibility on using waste, SCP, RCB and PFM clay mass, at temperatures above 900ºC, paver ceramic production, according to the specifications of the technical standards, so that to exceed the 10% of the PFM, it becomes imperative to conduct studies of environmental impacts