959 resultados para Uncoupling Protein-3
Resumo:
Abstract Background About 130 million people are infected with the hepatitis C virus (HCV) worldwide, but effective treatment options are not yet available. One of the most promising targets for antiviral therapy is nonstructural protein 3 (NS3). To identify possible changes in the structure of NS3 associated with virological sustained response or non-response of patients, a model was constructed for each helicase NS3 protein coding sequence. From this, the goal was to verify the interaction between helicases variants and their ligands. Findings Evidence was found that the NS3 helicase portion of non-responder patients contained substitutions in its ATP and RNA binding sites. K210E substitution can cause an imbalance in the distribution of loads, leading to a decrease in the number of ligations between the essential amino acids required for the hydrolysis of ATP. W501R substitution causes an imbalance in the distribution of loads, leading and forcing the RNA to interact with the amino acid Thr269, but not preventing binding of ribavirin inhibitor. Conclusions Useful information is provided on the genetic profiling of the HCV genotype 3, specifically the coding region of the NS3 protein, improving our understanding of the viral genome and the regions of its protein catalytic site.
Resumo:
To determine whether Toxoplasma gondii infection could modify biological phenomena associated with brain ischemia, we investigated the effect of permanent middle cerebral artery occlusion (MCAO) on neuronal survival, inflammation and redox state in chronically infected mice. Infected animals showed a 40% to 50% decrease of infarct size compared with non-infected littermates 1, 4 and 14 days after MCAO. The resistance of infected mice may be associated with increased basal levels of anti-inflammatory cytokines and/or a marked reduction of the MCAO-related brain induction of two pro-inflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma (IFNgamma). In addition, potential anti-inflammatory/neuroprotective factors such as nerve growth factor, suppressor of cytokine signaling-3, superoxide dismutase activity, uncoupling protein-2 and glutathione (GSH) were upregulated in the brain of infected mice. Consistent with a role of GSH in central cytokine regulation, GSH depletion by diethyl maleate inhibited Toxoplasma gondii lesion resistance by increasing the proinflammatory cytokine IFNgamma brain levels. Overall, these findings indicate that chronic toxoplasmosis decisively influences both the inflammatory molecular events and outcome of cerebral ischemia.
Resumo:
Statins exert anti-inflammatory, anti-atherogenic actions. The mechanisms responsible for these effects remain only partially elucidated. Diabetes and obesity are characterized by low-grade inflammation. Metabolic and endocrine adipocyte dysfunction is known to play a crucial role in the development of these disorders and the related cardiovascular complications. Thus, direct modulation of adipocyte function may represent a mechanism of pleiotropic statin actions. We investigated effects of atorvastatin on apoptosis, differentiation, endocrine, and metabolic functions in murine white and brown adipocyte lines. Direct exposure of differentiating preadipocytes to atorvastatin strongly reduced lipid accumulation and diminished protein expression of the differentiation marker CCAAT/enhancer binding protein-beta (CEBP-beta). In fully differentiated adipocytes, however, lipid accumulation remained unchanged after chronic atorvastatin treatment. Furthermore, cell viability was reduced in response to atorvastatin treatment in proliferating and differentiating preadipocytes, but not in differentiated cells. Moreover, atorvastatin induced apoptosis and inhibited protein kinase B (AKT) phosphorylation in proliferating and differentiating preadipocytes, but not in differentiated adipocytes. On the endocrine level, direct atorvastatin treatment of differentiated white adipocytes enhanced expression of the pro-inflammatory adipokine interleukin-6 (IL-6), and downregulated expression of the insulin-mimetic and anti-inflammatory adipokines visfatin and adiponectin. Finally, these direct adipotropic endocrine effects of atorvastatin were paralleled by the acute inhibition of insulin-induced glucose uptake in differentiated white adipocytes, while protein expression of the thermogenic uncoupling protein-1 (UCP-1) in brown adipocytes remained unchanged. Taken together, our data for the first time demonstrate direct differentiation state-dependent effects of atorvastatin including apoptosis, modulation of pro-inflammatory and glucostatic adipokine expression, and insulin resistance in adipose cells. These differential interactions may explain variable clinical observations.
Resumo:
Cathepsin D (Cath-D) expression in human primary breast cancer has been associated with a poor prognosis. In search of a better understanding of the Cath-D substrates possibly involved in cancer invasiveness and metastasis, we investigated the potential interactions between this protease and chemokines. Here we report that purified Cath-D, as well as culture supernatants from the human breast carcinoma cell lines MCF-7 and T47D, selectively degrade macrophage inflammatory protein (MIP)-1 alpha (CCL3), MIP-1 beta (CCL4), and SLC (CCL21). Proteolysis was totally blocked by the protease inhibitor pepstatin A, and specificity of Cath-D cleavage was demonstrated using a large chemokine panel. Whereas MIP-1 alpha and MIP-1 beta degradation was rapid and complete, cleavage of SLC was slow and not complete. Mass spectrometry analysis showed that Cath-D cleaves the Leu(58) to Trp(59) bond of SLC producing two functionally inactive fragments. Analysis of Cath-D proteolysis of a series of monocyte chemoattractant protein-3/MIP-1 beta hybrids indicated that processing of MIP-1 beta might start by cleaving off amino acids located in the C-terminal domain. In situ hybridization studies revealed MIP-1 alpha, MIP-1 beta, and Cath-D gene expression mainly in the stromal compartment of breast cancers whereas SLC transcripts were found in endothelial cells of capillaries and venules within the neoplastic tissues. Cath-D production in the breast carcinoma cell lines MCF-7 and T47D, as assessed by enzyme-linked immunosorbent assay of culture supernatants and cell lysates, was not affected by stimulation with chemokines such as interleukin-8 (CXCL8), SDF-1 (CXCL12), and SLC. These data suggest that inactivation of chemokines by Cath-D possibly influences regulatory mechanisms in the tumoral extracellular microenvironment that in turn may affect the generation of the antitumoral immune response, the migration of cancer cells, or both processes.
Resumo:
The molecular mechanisms governing sex determination and differentiation in the zebrafish (Danio rerio) are not fully understood. To gain more insights into the function of specific genes in these complex processes, the expression of multiple candidates needs to be assessed, preferably on the protein level. Here, we developed a targeted proteomics method based on selected reaction monitoring (SRM) to study the candidate sex-related proteins in zebrafish which were selected based on a global proteomics analysis of adult gonads and representational difference analysis of male and female DNA, as well as on published information on zebrafish and other vertebrates. We employed the developed SRM protocols to acquire time-resolved protein expression profiles during the gonad differentiation period in vas::EGFP transgenic zebrafish. Evidence on protein expression was obtained for the first time for several candidate genes previously studied only on the mRNA level or suggested by bioinformatic predictions. Tuba1b (tubulin alpha 1b), initially included in the study as one of the potential housekeeping proteins, was found to be preferentially expressed in the adult testis with nearly absent expression in the ovary. The revealed changes in protein expression patterns associated with gonad differentiation suggest that several of the examined proteins, especially Ilf2 and Ilf3 (interleukin enhancer-binding factors 2 and 3), Raldh3 (retinaldehyde dehydrogenase type 3), Zgc:195027 (low density lipoprotein-related receptor protein 3) and Sept5a (septin 5a), may play a specific role in the sexual differentiation in zebrafish.
Resumo:
Obesity and related chronic diseases represent a tremendous public health burden among Mexican Americans, a young and rapidly-expanding population. This study investigated the impact of variation within eight candidate obesity genes, which include leptin (LEP), leptin receptor (LEPR), neuropeptide Y (NPY), NPYY1 receptor (NPYY1), glucagon-like peptide-1 (GLP-1), GLP-1 receptor (GLP1R), beta-3 adrenergic receptor (β3AR), and uncoupling protein (UCP1), on variation in human obesity status and/or quantitative traits related to obesity in Mexican Americans from Starr County, Texas. The Trp64Arg polymorphism within β3AR was typed in 820 random individuals and 240 pedigrees (N = 2,044). The Arg allele frequency was significantly greater in obese versus non-obese individuals (0.20 versus 0. 15, respectively). In addition, within the random sample, the Arg allele was associated with significantly greater body weight (p = 0.031) and body mass index (BMI, p = 0.008) than the Trp allele. In the family sample, the Trp64Arg locus was also linked to percent fat (p = 0.045) but not to body weight or BMI. No linkage between obesity, diabetes, hypertension, or gallbladder disease and the Trp64Arg mutation was observed in families using affected sib pair linkage analysis or the transmission disequilibrium test. Microsatellite markers proximate to the remaining seven genes were typed in 302 individuals from 59 families. Sib pair linkage analysis provided evidence for linkage between obesity and NPY within affected sibling pairs (p = 0.042; n = 170 pairs). NPY was also linked to weight (p = 0.020), abdominal circumference (p = 0.031), hip circumference (p = 0.012), DBP (p ≤ 0.005), and a composite measure of body mass/fat (p ≤ 0.048) in all sibling pairs (n = 545 pairs). Additionally, LEP was linked to waist/hip ratio (p ≤ 0.009), total cholesterol (p ≤ 0.030), and HDL cholesterol (p ≤ 0.026), and LEPR was linked to fasting blood glucose (p ≤ 0.018) and DBP (p ≤ 0.003). Subsequent to the linkage analyses, the NPY gene was sequenced and eight variant sites identified. Two variant sites (-880I/D and 69I/D) were typed in a random sample of 914 individuals. The 880I/D variant was significantly associated with waist/hip ratio (p = 0.035) in the entire sample (N = 914) and with BMI (p = 0. 031), abdominal circumference (p = 0.044), and waist/hip ratio (p = 0.041) in a non-obese subsample (BW < 30 kg/m2, n = 594). The 69I/D variant was a rare mutation observed in only one pedigree and was not associated with obesity or body size/mass within this pedigree. Results of this study indicate that variation at or near β3AR, LEP, LEPR, and NPY may exert effects which increase obesity susceptibility and influence obesity-related measures in this population. ^
Resumo:
In all cells examined, specific endoplasmic reticulum (ER) membrane arrays are induced in response to increased levels of the ER membrane protein 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase. In yeast, expression of Hmg1p, one of two yeast HMG-CoA reductase isozymes, induces assembly of nuclear-associated ER stacks called karmellae. Understanding the features of HMG-CoA reductase that signal karmellae biogenesis would provide useful insights into the regulation of membrane biogenesis. The HMG-CoA reductase protein consists of two domains, a multitopic membrane domain and a cytosolic catalytic domain. Previous studies had indicated that the HMG-CoA reductase membrane domain was exclusively responsible for generation of ER membrane proliferations. Surprisingly, we discovered that this conclusion was incorrect: sequences at the carboxyl terminus of HMG-CoA reductase can profoundly affect karmellae biogenesis. Specifically, truncations of Hmg1p that removed or shortened the carboxyl terminus were unable to induce karmellae assembly. This result indicated that the membrane domain of Hmg1p was not sufficient to signal for karmellae assembly. Using β-galactosidase fusions, we demonstrated that the carboxyl terminus was unlikely to simply serve as an oligomerization domain. Our working hypothesis is that a truncated or misfolded cytosolic domain prevents proper signaling for karmellae by interfering with the required tertiary structure of the membrane domain.
Resumo:
We previously reported that KIF3A and KIF3B form a heterodimer that functions as a microtubule-based fast anterograde translocator of membranous organelles. We have also shown that this KIF3A/3B forms a complex with other associated polypeptides, named kinesin superfamily-associated protein 3 (KAP3). In the present study, we purified KAP3 protein by immunoprecipitation using anti-KIF3B antibody from mouse testis. Microsequencing was carried out, and we cloned the full-length KAP3 cDNA from a mouse brain cDNA library. Two isoforms of KAP3 exist [KAP3A (793 aa) and KAP3B (772 aa)], generated by alternative splicing in the carboxyl terminus region. Their amino acid sequences have no homology with those of any other known proteins, and prediction of their secondary structure indicated that almost the entire KAP3 molecule is alpha-helical. We produced recombinant KAP3 and KIF3A/3B using a baculovirus-Sf9 expression system. A reconstruction study in Sf9 cells revealed that KAP3 is a globular protein that binds to the tail domain of KIF3A/3B. The immunolocalization pattern of KAP3 was similar to that of KIF3A/3B in nerve cells. In addition, we found that KAP3 does not affect the motor activity of KIF3A/3B. KAP3 was associated with a membrane-bound form of KIF3A/3B in a fractional immunoprecipitation experiment, and since the KIF3 complex was found to bind to membranous organelles in an EM study, KAP3 may regulate membrane binding of the KIF3 complex.
Resumo:
Nuclear hormone receptors are transcription factors that require multiple protein-protein interactions to regulate the expression of their target genes. Using the yeast two-hybrid system, we identified a protein, thyroid hormone receptor uncoupling protein (TRUP), that specifically interacts with a region of the human thyroid hormone receptor (TR) consisting of the hinge region and the N-terminal portion of the ligand binding domain in a hormone-independent manner. Interestingly, TRUP inhibits transactivation by TR and the retinoic acid receptor but has no effect on the estrogen receptor or the retinoid X receptor in mammalian cells. We also demonstrate that TRUP exerts its action on TR and retinoic acid receptor by interfering with their abilities to interact with their DNA. TRUP represents a type of regulatory protein that modulates the transcriptional activity of a subclass of the nuclear hormone receptor superfamily by preventing interaction with their genomic response elements.
Resumo:
Lipid-mobilising factor (LMF) is produced by cachexia-inducing tumours and is involved in the degradation of adipose tissue, with increased oxidation of the released fatty acids through an induction of uncoupling protein (UCP) expression. Since UCP-2 is thought to be involved in the detoxification of free radicals if LMF induced UCP-2 expression in tumour cells, it might attenuate free radical toxicity. As a model system we have used MAC13 tumour cells, which do not produce LMF. Addition of LMF caused a concentration-dependent increase in UCP-2 expression, as determined by immunoblotting. This effect was attenuated by the β3 antagonist SR59230A, suggesting that it was mediated through a β3 adrenoreceptor. Co-incubation of LMF with MAC13 cells reduced the growth-inhibitory effects of bleomycin, paraquat and hydrogen peroxide, known to be free radical generators, but not chlorambucil, an alkylating agent. There was no effect of LMF alone on cellular proliferation. These results indicate that LMF antagonises the antiproliferative effect of agents working through a free radical mechanism, and may partly explain the unresponsiveness to the chemotherapy of cachexia-inducing tumours. © 2004 Cancer Research UK.
Resumo:
Cachexia is characterised by a progressive weight loss due to depletion of both skeletal muscle and adipose tissue. The loss of adipose tissue is due to the production of a tumour-derived lipid mobilising factor (LMF), which has been shown to directly induce lipolysis in isolated epididymal murine white adipocytes. The administration of LMF to a non-tumour bearing mice produced a rapid weight loss, with a specific reduction in carcass lipid with also some redistribution of lipid with the accumulation of lipid in the liver. There was also up-regulation of uncoupling protein-1 and -2 mRNA and protein expression in brown adipose tissue, suggesting that an adaptive process occurs due to increased energy mobilisation. There was also up-regulation of UCP-2 in the livers of LMF treated mice, suggesting a protective mechanism to the build up of lipid in the livers, which would produce free radical by-products. LMF was also shown to stimulate cyclic AMP production in CHO-K1 cells transfected with human -3 adrenergic receptors and inhibited by the -β3 antagonist SR59230A. LMF binding was also inhibited by SR59230A in isolated receptors. This suggests that LMF mediates its effects through a β3 adrenergic receptor. There were also changes in glucose and fatty acid uptake in LMF treated mice, which suggests metabolic changes are occurring. The study suggests that a tumour derived lipolytic factor acts through the 3 adrenoceptor producing effects on lipid mobilisation, energy expenditure and glucose metabolism.
Resumo:
Cancer cachexia comprises unintentional and debilitating weight loss associated with certain tumour types. Fat loss in cachexia is mediated by a 43kDa Lipid Mobilising Factor (LMF) sharing homology with endogenous Zinc-α2-Glycoprotein (ZAG). LMF and ZAG induced significant lipolysis in isolated epidydimal adipose tissue. This is attenuated by co-incubation with 10μM of antagonist SR59230A and partially attenuated by 25μM PD098059 (indicating β3-AR and MAPK involvement respectively). LMF/ZAG induced in vitro lipid depletion in differentiated 3T3-L1 adipocytes that seen to comprise a significant increase in lipolysis (p<0.01), with only a modest decrease in lipid synthesis (p=0.09). ZAG significantly increased in vitro protein synthesis (p<0.01) in C2C12 myotubes (without an effect on protein degradation). This increase was activated at transcription and attenuated by co-incubation with 10μM SR59230A. Proteolytic digestion of ZAG and LMF followed by sephadex G50 chromatography yielded active fragments of 6-15kDa, indication the entire molecule was not required for bioactivity. Cachexigenic MAC16 cells demonstrated significant in vitro ZAG expression over non-cachexigenic MAC13 cells (p<0.001). WAT and BAT excised from MAC16 mice of varying weight loss demonstrated increased ZAG expression compared to controls. Dosing of NMRI mice with s/c ZAG failed to reproduce this up-regulation, thus another cachectic factor is responsible. 0.58nM LMF conferred significant protection against hydrogen peroxide, paraquat and bleomycin-induced oxidative stress in the non-cachexigenic MAC13 cell line. This protection was attenuated by 10μM SR59230A indicating a β3-AR mediated effect. In addition, 0.58nM LMF significantly up regulated UCP2 expression (p<0.001), (a mitochondrial protein implicated in the detoxification of ROS) implying this to be the mechanism by which survival was achieved. In vitro, LMF caused significant up-regulation of UCP1 in BAT and UCP2 and 3 in C2C12 myotubes. This increase in uncoupling protein expression further potentiates the negative energy balance and wasting observed in cachexia.
Resumo:
Loss of adipose tissue in cancer cachexia has been associated with tumour production of a lipid-mobilizing factor (LMF) which has been shown to be homologous with the plasma protein zinc-a2-glycoprotein (ZAG). The aim of this study was to compare the ability of human ZAG with LMF to stimulate lipolysis in vitro and induce loss of body fat in vivo, and to determine the mechanisms involved. ZAG was purified from human plasma using a combination of Q Sepharose and Superdex 75 chromatography, and was shown to stimulate glycerol release from isolated murine epididymal adipocytes in a dose-dependent manner. The effect was enhanced by the cyclic AMP phosphodiesterase inhibitor Ro20-1724, and attenuated by freeze/thawing and the specific ß3-adrenoreceptor antagonist SR59230A. In vivo ZAG caused highly significant, time-dependent, decreases in body weight without a reduction in food and water intake. Body composition analysis showed that loss of body weight could be attributed entirely to the loss of body fat. Loss of adipose tissue may have been due to the lipolytic effect of ZAG coupled with an increase in energy expenditure, since there was a dose-dependent increase in expression of uncoupling protein-1 (UCP-1) in brown adipose tissue. These results suggest that ZAG may be effective in the treatment of obesity.
Resumo:
Extensive loss of adipose tissue is a hallmark of cancer cachexia but the cellular and molecular basis remains unclear. This study has examined morphologic and molecular characteristics of white adipose tissue in mice bearing a cachexia-inducing tumour, MAC16. Adipose tissue from tumour-bearing mice contained shrunken adipocytes that were heterogeneous in size. Increased fibrosis was evident by strong collagen-fibril staining in the tissue matrix. Ultrastructure of 'slimmed' adipocytes revealed severe delipidation and modifications in cell membrane conformation. There were major reductions in mRNA levels of adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPα), CCAAT/enhancer binding protein beta, peroxisome proliferator-activated receptor gamma, and sterol regulatory element binding protein-1c (SREBP-1c) in adipose tissue, which was accompanied by reduced protein content of C/EBPα and SREBP-1. mRNA levels of SREBP-1c targets, fatty acid synthase, acetyl CoA carboxylase, stearoyl CoA desaturase 1 and glycerol-3-phosphate acyl transferase, also fell as did glucose transporter-4 and leptin. In contrast, mRNA levels of peroxisome proliferators-activated receptor gamma coactivator-1alpha and uncoupling protein-2 were increased in white fat of tumour-bearing mice. These results suggest that the tumour-induced impairment in the formation and lipid storing capacity of adipose tissue occurs in mice with cancer cachexia. © 2006 Cancer Research UK.