889 resultados para Unconditional Convergence
Resumo:
In this article, we prove convergence of the weakly penalized adaptive discontinuous Galerkin methods. Unlike other works, we derive the contraction property for various discontinuous Galerkin methods only assuming the stabilizing parameters are large enough to stabilize the method. A central idea in the analysis is to construct an auxiliary solution from the discontinuous Galerkin solution by a simple post processing. Based on the auxiliary solution, we define the adaptive algorithm which guides to the convergence of adaptive discontinuous Galerkin methods.
Resumo:
General circulation models (GCMs) use transient climate simulations to predict climate conditions in the future. Coarse-grid resolutions and process uncertainties necessitate the use of downscaling models to simulate precipitation. However, in the downscaling models, with multiple GCMs now available, selecting an atmospheric variable from a particular model which is representative of the ensemble mean becomes an important consideration. The variable convergence score (VCS) provides a simple yet meaningful approach to address this issue, providing a mechanism to evaluate variables against each other with respect to the stability they exhibit in future climate simulations. In this study, VCS methodology is applied to 10 atmospheric variables of particular interest in downscaling precipitation over India and also on a regional basis. The nested bias-correction methodology is used to remove the systematic biases in the GCMs simulations, and a single VCS curve is developed for the entire country. The generated VCS curve is expected to assist in quantifying the variable performance across different GCMs, thus reducing the uncertainty in climate impact-assessment studies. The results indicate higher consistency across GCMs for pressure and temperature, and lower consistency for precipitation and related variables. Regional assessments, while broadly consistent with the overall results, indicate low convergence in atmospheric attributes for the Northeastern parts of India.
Resumo:
This paper considers the problem of determining the time-optimal path of a fixed-wing Miniature Air Vehicle (MAV), in the presence of wind. The MAV, which is subject to a bounded turn rate, is required to eventually converge to a straight line starting from a known initial position and orientation. Earlier work in the literature uses Pontryagin's Minimum Principle (PMP) to solve this problem only for the no-wind case. In contrast, the present work uses a geometric approach to solve the problem completely in the presence of wind. In addition, it also shows how PMP can be used to partially solve the problem. Using a 6-DOF model of a MAV the generated optimal path is tracked by an autopilot consisting of proportional-integral-derivative (PID) controllers. The simulation results show the path generation and tracking for cases with steady and time-varying wind. Some issues on real-time path planning are also addressed.
Resumo:
This paper presents a strategy to determine the shortest path of a fixed-wing Miniature Air Vehicle (MAV), constrained by a bounded turning rate, to eventually fly along a given straight line, starting from an arbitrary but known initial position and orientation. Unlike the work available in the literature that solves the problem using the Pontryagin's Minimum Principle (PMP) the trajectory generation algorithm presented here considers a geometrical approach which is intuitive and easy to understand. This also computes the explicit solution for the length of the optimal path as a function of the initial configuration. Further, using a 6-DOF model of a MAV the generated optimal path is tracked by an autopilot consisting of proportional-integral-derivative (PID) controllers. The simulation results show the path generation and tracking for different cases.
Resumo:
3-D full-wave method of moments (MoM) based electromagnetic analysis is a popular means toward accurate solution of Maxwell's equations. The time and memory bottlenecks associated with such a solution have been addressed over the last two decades by linear complexity fast solver algorithms. However, the accurate solution of 3-D full-wave MoM on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretization may not be fine enough to capture spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates a large number of solution variables and therefore requires an unnecessarily large matrix solution. In this paper, different refinement criteria are studied in an adaptive mesh refinement platform. Consequently, the most suitable conductor mesh refinement criterion for MoM-based electromagnetic package-board extraction is identified and the advantages of this adaptive strategy are demonstrated from both accuracy and speed perspectives. The results are also compared with those of the recently reported integral equation-based h-refinement strategy. Finally, a new methodology to expedite each adaptive refinement pass is proposed.
Resumo:
We investigate the relaxation of long-tailed distributions under stochastic dynamics that do not support such tails. Linear relaxation is found to be a borderline case in which long tails are exponentially suppressed in time but not eliminated. Relaxation stronger than linear suppresses long tails immediately, but may lead to strong transient peaks in the probability distribution. We also find that a delta-function initial distribution under stronger than linear decay displays not one but two different regimes of diffusive spreading.
Resumo:
Three-dimensional (3-D) full-wave electromagnetic simulation using method of moments (MoM) under the framework of fast solver algorithms like fast multipole method (FMM) is often bottlenecked by the speed of convergence of the Krylov-subspace-based iterative process. This is primarily because the electric field integral equation (EFIE) matrix, even with cutting-edge preconditioning techniques, often exhibits bad spectral properties arising from frequency or geometry-based ill-conditioning, which render iterative solvers slow to converge or stagnate occasionally. In this communication, a novel technique to expedite the convergence of MoMmatrix solution at a specific frequency is proposed, by extracting and applying Eigen-vectors from a previously solved neighboring frequency in an augmented generalized minimum residual (AGMRES) iterative framework. This technique can be applied in unison with any preconditioner. Numerical results demonstrate up to 40% speed-up in convergence using the proposed Eigen-AGMRES method.
Resumo:
The system of coupled oscillators and its time-discretization (with constant stepsize h) are considered in this paper. Under some conditions, it is showed that the discrete systems have one-dimensional global attractors l(h) converging to l which is the global attractor of continuous system.
Resumo:
Optimal Bayesian multi-target filtering is in general computationally impractical owing to the high dimensionality of the multi-target state. The Probability Hypothesis Density (PHD) filter propagates the first moment of the multi-target posterior distribution. While this reduces the dimensionality of the problem, the PHD filter still involves intractable integrals in many cases of interest. Several authors have proposed Sequential Monte Carlo (SMC) implementations of the PHD filter. However, these implementations are the equivalent of the Bootstrap Particle Filter, and the latter is well known to be inefficient. Drawing on ideas from the Auxiliary Particle Filter (APF), a SMC implementation of the PHD filter which employs auxiliary variables to enhance its efficiency was proposed by Whiteley et. al. Numerical examples were presented for two scenarios, including a challenging nonlinear observation model, to support the claim. This paper studies the theoretical properties of this auxiliary particle implementation. $\mathbb{L}_p$ error bounds are established from which almost sure convergence follows.