996 resultados para Ultrasonic velocity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell invasion involves a population of cells that migrate along a substrate and proliferate to a carrying capacity density. These two processes, combined, lead to invasion fronts that move into unoccupied tissues. Traditional modelling approaches based on reaction–diffusion equations cannot incorporate individual–level observations of cell velocity, as information propagates with infinite velocity according to these parabolic models. In contrast, velocity jump processes allow us to explicitly incorporate individual–level observations of cell velocity, thus providing an alternative framework for modelling cell invasion. Here, we introduce proliferation into a standard velocity–jump process and show that the standard model does not support invasion fronts. Instead, we find that crowding effects must be explicitly incorporated into a proliferative velocity–jump process before invasion fronts can be observed. Our observations are supported by numerical and analytical solutions of a novel coupled system of partial differential equations, including travelling wave solutions, and associated random walk simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated effects of defensive pressure on running velocity in footballers during the approach to kick a stationary football. Approach velocity and ball speed/accuracy data were recorded from eight football youth academy participants (15.25, SD=0.46 yrs). Participants were required to run to a football to cross it to a receiver to score against a goal-keeper. Defensive pressure was manipulated across three counterbalanced conditions: defender-absent (DA); defender-far (DF) and defender-near (DN). Pass accuracy (percentages of a total of 32 trials with 95% confidence limits in parenthesis) did not significantly reduce under changing defensive pressure: DA, 78% (55–100%); DF, 78% (61–96%); DN, 59% (40–79%). Ball speed (m·s−1) significantly reduced as defensive pressure was included and increased: DA, 23.10 (22.38–23.83); DF, 20.40 (19.69–21.11); DN, 19.22 (18.51–19.93). When defensive pressure was introduced, average running velocity of attackers did not change significantly: DA versus DF (m·s−1), 5.40 (5.30–5.51) versus 5.41 (5.34–5.48). Scaling defender starting positions closer to the start position of the attacker (DN) significantly increased average running velocity relative to the DA and DF conditions, 5.60 (5.50–5.71). In the final approach footfalls, all conditions significantly differed: DA, 5.69 (5.35–6.03); DF, 6 .22 (5.93–6.50); DN, 6.52 (6.23–6.80). Data suggested that approach velocity is constrained by both presence and initial distance of the defender during task performance. Implications are that the expression of kicking behaviour is specific to a performance context and some movement regulation features will not emerge unless a defender is present as a task constraint in practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research fluidization behavior of cubical Bovine intestine samples was studied. Bovine intestine samples were heat pump dried at atmospheric pressure and at emperatures below and above the material freezing points. Experiments were conducted to study fluidization characteristics and drying kinetics at different drying conditions. Bovine particles were characterized according to Geldart classification and minimum fluidization velocity was calculated using Ergun Equation and generalized equation for all drying conditions at the beginning of the trials and end of the trials. Walli’s model was used to categorize stability of the fluidization at the beginning and end of the drying for each trial. Walli’s values determined were positive at the beginning and end of all trials indicating stable fluidisation at the beginning and end for each drying condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High power piezoelectric ultrasonic transducers have been widely exploited in a variety of applications. The critical behaviour of a piezoelectric device is encapsulated in its resonant frequencies because of its maximum transmission performance at these frequencies. Therefore power electronic converters should be tuned at those resonant frequencies to transfer electrical power to mechanical power efficiently. However, structural and environmental changes cause variations in the device resonant frequencies which can degrade the system performance. Hence, estimating the device resonant frequencies within the incorporated setup can significantly improve the system performance. This paper proposes an efficient resonant frequency estimation approach to maintain the performance of high power ultrasonic applications using the employed power converter. Experimental validations indicate the effectiveness of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research developed and scientifically validated a new ultrasound transmission computed tomography system with the aim of quantitative assessment of a polymer gel dosimeter including dose response verification of ultrasonic parameters of attenuation, velocity and broadband ultrasound attenuation (BUA). This work was the first to investigate and report ultrasound frequency dependent attenuation in a gel dosimeter, demonstrating a dose dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnostics of rotating machinery has developed significantly in the last decades, and industrial applications are spreading in different sectors. Most applications are characterized by varying velocities of the shaft and in many cases transients are the most critical to monitor. In these variable speed conditions, fault symptoms are clearer in the angular/order domains than in the common time/frequency ones. In the past, this issue was often solved by synchronously sampling data by means of phase locked circuits governing the acquisition; however, thanks to the spread of cheap and powerful microprocessors, this procedure is nowadays rarer; sampling is usually performed at constant time intervals, and the conversion to the order domain is made by means of digital signal processing techniques. In the last decades different algorithms have been proposed for the extraction of an order spectrum from a signal sampled asynchronously with respect to the shaft rotational velocity; many of them (the so called computed order tracking family) use interpolation techniques to resample the signal at constant angular increments, followed by a common discrete Fourier transform to shift from the angular domain to the order domain. A less exploited family of techniques shifts directly from the time domain to the order spectrum, by means of modified Fourier transforms. This paper proposes a new transform, named velocity synchronous discrete Fourier transform, which takes advantage of the instantaneous velocity to improve the quality of its result, reaching performances that can challenge the computed order tracking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nine level modular multilevel cascade converter (MMCC) based on four full bridge cells is shown driving a piezoelectric ultrasonic transducer at 71 and 39 kHz, in simulation and experimentally. The modular cells are small stackable PCBs, each with two fully integrated surface mount 22 V, 40 A MOSFET half-bridge converters, and include all control signal and power isolation. In this work, the bridges operate at 12 V and 384 kHz, to deliver a 96 Vpp 9 level waveform with an effective switching frequency of 3 MHz. A 9 pH air cored inductor forms a low pass filter in conjunction with the 3000 pF capacitance of the transducer load. Eight equally phase-displaced naturally sampled pulse width modulation (PWM) drive signals, along with the modulating sinusoid, are generated using phase accumulation techniques in a dedicated FPGA. Experimental time domain and FFT plots of the multilevel and transducer output waveforms are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, the velocity distributions of charge carriers in high-mobility polymer thin-film transistors (TFTs) with a diketopyrrolopyrrole- naphthalene copolymer (PDPP-TNT) semiconductor active layer are reported. The velocity distributions are found to be strongly dependent on measurement temperatures as well as annealing conditions. Considerable inhomogeneity is evident at low measurement temperatures and for low annealing temperatures. Such transient transport measurements can provide additional information about charge carrier transport in TFTs which are unavailable using steady-state transport measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report charge-carrier velocity distributions in high-mobility polymer thin-film transistors (PTFTs) employing a dual-gate configuration. Our time-domain measurements of dual-gate PTFTs indicate higher effective mobility as well as fewer low-velocity carriers than in single-gate operation. Such nonquasi-static (NQS) measurements support and clarify the previously reported results of improved device performance in dual-gate devices by various groups. We believe that this letter demonstrates the utility of NQS measurements in studying charge-carrier transport in dual-gate thin-film transistors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Footwear remains a prime candidate for the prevention and rehabilitation of Achilles tendinopathy as it is thought to decrease tension in the tendon through elevation of the heel. However, evidence for this effect is equivocal. Purpose: This study used an acoustic transmission technique to investigate the effect of running shoes on Achilles tendon loading during barefoot and shod walking. Methods: Acoustic velocity was measured in the Achilles tendon of twelve recreationally–active males (age, 31±9 years; height, 1.78±0.06 m; weight, 81.0±16.9 kg) during barefoot and shod walking at matched self–selected speed (3.4±0.7 km/h). Standard running shoes incorporating a 10– mm heel offset were used. Vertical ground reaction force and spatiotemporal parameters were determined with an instrumented treadmill. Axial acoustic velocity in the Achilles tendon was measured using a custom built ultrasonic device. All data were acquired at a rate of 100 Hz during 10s of steady–state walking. Statistical comparisons between barefoot and shod conditions were made using paired t–tests and repeated measure ANOVAs. Results: Acoustic velocity in the Achilles tendon was highly reproducible and was typified by two maxima (P1, P2) and minima (M1, M2) during walking. Footwear resulted in a significant increase in step length, stance duration and peak vertical ground reaction force compared to barefoot walking. Peak acoustic velocity in the Achilles tendon (P1, P2) was significantly higher with running shoes. Conclusions: Peak acoustic velocity in the Achilles tendon was higher with footwear, suggesting that standard running shoes with a 10–mm heel offset increase tensile load in the Achilles tendon. Although further research is required, these findings question the therapeutic role of standard running shoes in Achilles tendinopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injection velocity has been recognized as a key variable in thermoplastic injection molding. Its closed-loop control is, however, difficult due to the complexity of the process dynamic characteristics. The basic requirements of the control system include tracking of a pre-determined injection velocity curve defined in a profile, load rejection and robustness. It is difficult for a conventional control scheme to meet all these requirements. Injection velocity dynamics are first analyzed in this paper. Then a novel double-controller scheme is adopted for the injection velocity control. This scheme allows an independent design of set-point tracking and load rejection and has good system robustness. The implementation of the double-controller scheme for injection velocity control is discussed. Special techniques such as profile transformation and shifting are also introduced to improve the velocity responses. The proposed velocity control has been experimentally demonstrated to be effective for a wide range of processing conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic vocalisations (frequencies > 20 kHz) have been extensively studied in the context of echolocation by bats and other mammals (Sales & Pye 1974; Wilson & Hare 2004). Ultrasonic calls have also been recorded from birds, including the blue-throated hummingbird ( Lampornis clemenciae ) (Pytte et al. 2004), where it was first thought that individuals made use of high pitch calls to avoid masking by background noise in a visually obscured environment. Similarly, city-dwelling great tits ( Parus major ) use song with a higher minimum frequency (although not ultrasonic) compared to woodland birds to communicate with conspecifics to avoid the predominantly low-frequency background noise in the city (Slabbekorn & Peet 2003). The theory that birds use ultrasound to avoid noise masking was discarded when it was discovered that there was no corresponding auditory brainstem response (i.e. sensory perception) to the ultrasonic calls in the hummingbirds producing those calls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective means of facilitating DNA vaccine delivery to antigen presenting cells is through biodegradable microspheres. Microspheres offer distinct advantages over other delivery technologies by providing release of DNA vaccine in its bioactive form in a controlled fashion. In this study, biodegradable poly(D,L-lactide-coglycolide) (PLGA) microspheres containing polyethylenimine (PEI) condensed plasmid DNA (pDNA) were prepared using a 40 kHz ultrasonic atomization system. Process synthesis parameters, which are important to the scale-up of microspheres that are suitable for nasal delivery (i.e., less than 20 μm), were studied. These parameters include polymer concentration; feed flowrate; volumetric ratio of polymer and pDNA-PEI (plasmid DNA-polyethylenimine) complexes; and nitrogen to phosphorous (N/P) ratio. PDNA encapsulation efficiencies were predominantly in the range 82-96%, and the mean sizes of the particle were between 6 and 15 μm. The ultrasonic synthesis method was shown to have excellent reproducibility. PEI affected morphology of the microspheres, as it induced the formation of porous particles that accelerate the release rate of pDNA. The PLGA microspheres displayed an in vitro release of pDNA of 95-99% within 30 days and demonstrated zero order release kinetics without an initial spike of pDNA. Agarose electrophoresis confirmed conservation of the supercoiled form of pDNA throughout the synthesis and in vitro release stages. It was concluded that ultrasonic atomization is an efficient technique to overcome the key obstacles in scaling-up the manufacture of encapsulated vaccine for clinical trials and ultimately, commercial applications.