999 resultados para Ultrashort laser pulses
Resumo:
The topic of femtochemistry is surveyed from both theoretical and experimental points of view. A time-dependent wave packet description of the photodissociation of the O—C—S molecule reveals vibrational motion in the transition-state region and suggests targets for direct experimental observation. Theoretical approaches for treating femtosecond chemical phenomena in condensed phases are featured along with prospects for laser-controlled chemical reactions by using tailored ultrashort chirped pulses. An experimental study of the photoisomerization of retinal in the protein bacteriorhodopsin is discussed with an aim to gain insight into the potential energy surfaces on which this remarkably efficient and selective reactions proceeds. Finally, a prospective view of new frontiers in femtochemistry is given.
Resumo:
The interface between a Pt(111) electrode and a room temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with the laser-induced temperature jump method. In this technique, the temperature of the interface is suddenly increased by applying short laser pulses. The change of the electrode potential caused by the thermal perturbation is measured under coulostatic conditions during the subsequent temperature relaxation. This change is mainly related to the reorganization of the solvent components near the electrode surface. The sign of the potential transient depends on the potential of the experiment. At high potential values, positive transients indicate a higher density of anions than cations close the surface, contributing negatively to the potential of the electrode. Decreasing the applied potential to sufficiently low values, the transient becomes negative, meaning that the density of cations becomes then higher at the surface of the electrode. The potential dependence of the interfacial response shows a marked hysteresis depending on the direction in which the applied potential is changed.
Resumo:
We report on the first recording of a periodic structure of ∼150 nm pitch in a permanently moving sample of a pure fused silica using the tightly focused, 82 nJ, 267 nm, 300 fs, 1 kHz laser pulses. © 2007 IOP Publishing Ltd.
Resumo:
This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics
Resumo:
We report on the first recording of a periodic structure of ~150 nm pitch in a permanently moving sample of a pure fused silica using the tightly focused, 82 nJ, 267 nm, 300 fs, 1 kHz laser pulses.
Resumo:
The use of near infrared, high intensity femtosecond laser pulses for the inscription of long period fiber gratings in photonic crystal fiber is reported. The formation of grating structures in photonic crystal fiber is complicated by the fiber structure that allows wave-guidance but that impairs and scatters the femtosecond inscription beam. The effects of symmetric and asymmetric femtosecond laser inscriptions are compared and the polarization characteristics of long period gratings and their responses to external perturbations are reported.
Resumo:
This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics
Resumo:
The use of near infrared, high intensity femtosecond laser pulses for the inscription of long period fiber gratings in photonic crystal fiber is reported. The formation of grating structures in photonic crystal fiber is complicated by the fiber structure that allows wave-guidance but that impairs and scatters the femtosecond inscription beam. The effects of symmetric and asymmetric femtosecond laser inscriptions are compared and the polarization characteristics of long period gratings and their responses to external perturbations are reported.
Resumo:
Microfabrication of photonic devices by means of femtosecond (fs) laser pulses is reviewed. Adaptive modeling of fs laser pulse propagation was performed for detailed study of different regimes. Submicron structures are demonstrated in both infrared and UV ranges. Applications to fibre based devices and prototype integrated planar devices are discussed. © 2007 Optical Society of America.
Resumo:
This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.
Resumo:
The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity - the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.
Resumo:
We demonstrate generation of sub-100 fs pulses at 1.5 μm in a mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating element. The laser features a genuine all-fiber configuration. Based on the unique polarization properties of the 45°-tilted fiber grating, we managed to produce sub-100 fs laser pulses through proper dispersion management. To the best of our knowledge, this is the shortest pulse generated from modelocked lasers with fiber gratings. The output pulse has an average power of 8 mW, with a repetition rate of 47.8 MHz and pulse energy of 1.68 nJ. The performance of laser also matches well the theoretical simulations. © 2013 Optical Society of America.
Resumo:
In-fiber microchannels were fabricated directly in standard single mode fiber using the femtosecond laser inscribe and etch technique. This method of creating in-fiber microchannels offers great versatility, since it allows complex three-dimensional structures to be inscribed and then preferentially etched with hydrofluoric acid. In addition, inscription does not require a photosensitive fiber; the modification is induced through nonlinear processes triggered by an ultrashort laser pulse. Four in-fiber microchannel designs were experimentally investigated using this technique - microhole, microslot channel along the core, microslot channel perpendicular to the core and helical channel around the core. Each device design was evaluated through monitoring the optical spectral change while inserting a range of index matching oils into each microchannel; an R.I. sensitivity up to 1.55 dB/RIU was achieved in these initial tests. Furthermore, an all femtosecond laser inscribed Fabry-Pérot-based refractometer with an R.I. sensitivity of 2.75 nm/RIU was also demonstrated. The Fabry-Pérot refractometer was formed by positioning a microchannel between two femtosecond laser inscribed point-by-point fiber Bragg gratings.
Resumo:
The humidity sensor made of polymer optical fiber Bragg grating (POFBG) responds to the water content change in fiber induced by the change of environmental condition. The response time strongly depends on fiber size as the water change is a diffusion process. The ultra short laser pulses have been providing an effective micro fabrication method to achieve spatial localized modification in materials. In this work we used the excimer laser to create different microstructures (slot, D-shape) in POFBG to improve its performance. A significant improvement in the response time has been achieved in a laser etched D-shaped POFBG humidity sensor.
Resumo:
We use advanced statistical tools of time-series analysis to characterize the dynamical complexity of the transition to optical wave turbulence in a fiber laser. Ordinal analysis and the horizontal visibility graph applied to the experimentally measured laser output intensity reveal the presence of temporal correlations during the transition from the laminar to the turbulent lasing regimes. Both methods unveil coherent structures with well-defined time scales and strong correlations both, in the timing of the laser pulses and in their peak intensities. Our approach is generic and may be used in other complex systems that undergo similar transitions involving the generation of extreme fluctuations.