763 resultados para UWB antennas
Resumo:
The paper deals with an issue in space time block coding (STBC) design. It considers whether, over a time-selective channel, orthogonal STBC (O-STBC) or non-orthogonal STBC (NO-STBC) performs better. It is shown that, under time-selectiveness, once vehicle speed has risen above a certain value, NO-STBC always outperforms O-STBC across the whole SNR range. Also, considering that all existing NO-STBC schemes have been investigated under quasi-static channels only, a new simple receiver is derived for the NO-STBC system under time-selective channels.
Resumo:
A series of scale model measurements of transverse electromagnetic mode tapered slot antennas are presented. They show that the beam launched by this type of antenna is astigmatic. It is shown how an off-axis spherical mirror can be used to correct this astigmatism to allow efficient coupling to quasi-optical systems. A millimetre wave antenna and mirror combination is described and, with the aid of solid state noise diodes, the coupling of the launched beam to a quasi-optical spectrometer is shown to be in good agreement with that predicted by the scale model measurements.
Resumo:
In this paper, we develop an energy-efficient resource-allocation scheme with proportional fairness for downlink multiuser orthogonal frequency-division multiplexing (OFDM) systems with distributed antennas. Our aim is to maximize energy efficiency (EE) under the constraints of the overall transmit power of each remote access unit (RAU), proportional fairness data rates, and bit error rates (BERs). Because of the nonconvex nature of the optimization problem, obtaining the optimal solution is extremely computationally complex. Therefore, we develop a low-complexity suboptimal algorithm, which separates subcarrier allocation and power allocation. For the low-complexity algorithm, we first allocate subcarriers by assuming equal power distribution. Then, by exploiting the properties of fractional programming, we transform the nonconvex optimization problem in fractional form into an equivalent optimization problem in subtractive form, which includes a tractable solution. Next, an optimal energy-efficient power-allocation algorithm is developed to maximize EE while maintaining proportional fairness. Through computer simulation, we demonstrate the effectiveness of the proposed low-complexity algorithm and illustrate the fundamental trade off between energy and spectral-efficient transmission designs.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm
Resumo:
This work presents a theoretical and experimental investigation about the properties of microstrip antennas for ultra-wideband systems. Configurations of elliptic monopoles with different eccentricities and circular monopoles are considered. Two prototypes for each antenna configuration were built, one with the typical microstrip configuration and the other is similar to the first, except for a small aperture in the ground plane. Therefore, this work proposes to modify the configuration of the ground plane of the monopoles designed adding a rectangular stub, in order to optimize and improve the performance of such structures. The obtained results show that the introduction of that rectangular aperture in the ground plane allows an improvement of the frequency response for the considered antenna propotypes. It is observed a good agreement between the measured and simulated results. Finally, some proposals for future works are presented
Resumo:
This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables
Resumo:
This paper presents models that can be used in the design of microstrip antennas for mobile communications. The antennas can be triangular or rectangular. The presented models are compared with deterministic and empirical models based on artificial neural networks (ANN) presented in the literature. The models are based on Perceptron Multilayer (PML) and Radial Basis Function (RBF) ANN. RBF based models presented the best results. Also, the models can be embedded in CAD systems, in order to design microstrip antennas for mobile communications.
Resumo:
This paper presents a model for the control of the radiation pattern of a circular array of antennas, shaping it to address the radiation beam in the direction of the user, in order to reduce the transmitted power and to attenuate interference. The control of the array is based on Artificial Neural Networks (ANN) of the type RBF (Radial Basis Functions), trained from samples generated by the Wiener equation. The obtained results suggest that the objective was reached.
Resumo:
This paper uses artificial neural networks (ANN) to compute the resonance frequencies of rectangular microstrip antennas (MSA), used in mobile communications. Perceptron Multi-layers (PML) networks were used, with the Quasi-Newton method proposed by Broyden, Fletcher, Goldfarb and Shanno (BFGS). Due to the nature of the problem, two hundred and fifty networks were trained, and the resonance frequency for each test antenna was calculated by statistical methods. The estimate resonance frequencies for six test antennas were compared with others results obtained by deterministic and ANN based empirical models from the literature, and presented a better agreement with the experimental values.
Resumo:
O presente trabalho propõe metodologias para detectar a presença e localizar um intruso em ambientes indoor, 2-D e 3-D, sendo que neste último, utiliza-se um sistema cooperativo de antenas e, em ambos os casos, o sistema é baseado em radares multiestáticos. Para obter uma alta resolução, o radar opera com pulsos UWB, que possuem amplitude espectral máxima em 1 GHz para ambientes 2-D e, pulsos de banda larga com frequências entre 200 MHz e 500 MHz para ambientes 3-D. A estimativa de localização, para os ambientes bidimensionais, é feita pela técnica de otimização Enxame de Partículas - PSO (Particle Swarm Optimization), pelo método de Newton com eliminação de Gauss e pelo método dos mínimos quadrados com eliminação de Gauss. Para o ambiente tridimensional, foi desenvolvida uma metodologia vetorial que estima uma possível região de localização do intruso. Para a simulação das ondas eletromagnéticas se utiliza o método numérico FDTD (Diferenças Finitas no Domínio do Tempo) associado à técnica de absorção UPML (Uniaxial Perfectly Matched Layer) com o objetivo de truncar o domínio de análise simulando uma propagação ao infinito. Para a análise do ambiente em 2-D foi desenvolvido o ACOR-UWB-2-D e para o ambiente 3-D foi utilizado o software LANE SAGS.
Resumo:
A presente pesquisa trata o projeto e análise de uma antena monopolo planar com geometria modificada visando sua utilização para recepção do sinal de TV digital operante no Brasil na faixa de 470 MHz a 806 MHz. Faixa essa contida no espectro de UHF – Ultra High Frequency (300 MHz a 3 GHz). Para desenvolvimento desse trabalho foi tomado como referência à antena denominada “The Hi Monopole”. Que originalmente foi apresentada para operar em sistemas UWB (Ultra Wide Band) em 3,1 a 10,6 GHz. Para o desenvolvimento do trabalho proposto, diferentes técnicas de adequação da antena podem ser utilizadas para operação em banda larga, tais como: modificação na estrutura da antena, carregamento resistivo, chaveamento, utilização de elementos parasitas e estruturas de casamento. O projeto de antenas banda larga pode ser realizado a partir de três abordagens diferentes: domínio do tempo, domínio da frequência e método de expansão por singularidades. O método no domínio da frequência foi empregado neste trabalho para o projeto da antena proposta, algumas das técnicas supracitadas foram analisadas almejando o aumento da largura de banda, sendo confeccionado um protótipo da antena para validar os conceitos empregados. A antena foi então projetada para a faixa de 470 MHz a 890 MHz. O protótipo construído para essa mesma faixa apresentou bons resultados, o que valida à técnica empregada. Aspectos positivos e negativos do uso desta técnica são discutidos ao longo do trabalho. O programa computacional comercial CST® MICROWAVE STUDIO, baseado na Técnica da Integração Finita (FIT), foi usado para simulações no domínio da frequência.
Resumo:
This paper addresses the functional reliability and the complexity of reconfigurable antennas using graph models. The correlation between complexity and reliability for any given reconfigurable antenna is defined. Two methods are proposed to reduce failures and improve the reliability of reconfigurable antennas. The failures are caused by the reconfiguration technique or by the surrounding environment. These failure reduction methods proposed are tested and examples are given which verify these methods.
Resumo:
The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal.