989 resultados para URANIUM ORES
Resumo:
"Western Uranium Project, Lucius Pitkin, Inc., USAEC Contract No. AT(05-1)-912 contractor for the U.S. Atomic Energy Commission, Grand Junction, Colorado."
Resumo:
"April 1955."
Resumo:
"January 5, 1955."
Resumo:
"November 1954."
Resumo:
"April, 1955."
Resumo:
"January 1958."
Resumo:
"September 1962."
Resumo:
"January 1955."
Resumo:
"December 20, 1954."
Resumo:
"April, 1960."
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
Uranium series dating has been carried out on secondary uranyl silicate minerals formed during sub-glacial and post-glacial weathering of Proterozoic uraninite ores in south west Finland. The samples were obtained from two sites adjacent to the Salpauselkä III ice marginal formation and cover a range of depths, from the surface to more than 60 m. Measured ages fall into three distinct groups, 70–100 ka, 28–36 ka and < 2500 yr. The youngest set is associated with surface exposures and the crystals display clear evidence of re-working. The most likely trigger for uranium release at depths below the surface weathering zone is intrusion of oxidising glacial melt water. The latter is often characterised by very high discharge rates along channels, which close once the overpressure generated at the ice margin is released. There is excellent correspondence between the two Finnish sites and published data for similar deposits over a large area of southern and central Sweden. None of the seventy samples analysed gave a U–Th age between 40 and 70 ka; a second hiatus is apparent at 20 ka, coinciding with the Last Glacial Maximum. Thus, the process responsible for uranyl silicate formation was halted for significant periods, owing to a change in geochemical conditions or the hydrogeological regime. These data support the presence of interstadial conditions during the Early and Middle Weichselian since in the absence of major climatic perturbations the uranium phases at depth are stable. When viewed in conjunction with proxy data from mammoth remains it would appear that the region was ice-free prior to the Last Glacial Maximum.
Resumo:
The aim of this paper is to analyze and compare mineralogy and geochemistry of copper-zinc sulfide ores from the Logachev-2 and Rainbow hydrothermal fields of the Mid-Atlantic Ridge (MAR) confined to serpentinite protrusions. It was found that Zn(Fe) and Cu, Fe(Zn) sulfides had been deposited in black smokers pipes almost simultaneously from intermittently flowing, nonequilibrium H2S-low solutions of different temperatures. Pb isotope composition confirmed that the deep oceanic crust had been a source of lead. The ores from the Rainbow field are 20-fold higher in Co than ores restricted to basalts and show a high ratio of Co/Ni=46. The ores from the Rainbow field are enriched in 34S isotope (aver. d34S=10 per mil) because of constant flow of cold sea water into the subsurface zone of the hydrothermal system. Ores from the Logachev-2 field are 8 times higher in gold compared to other MAR regions. Sulfide ores from the Rainbow and Logachev-2 fields have no analogues among MAR ore occurrences in terms of enrichment in valuable components (Zn, Cd, Co, and Au).
Resumo:
Mineralogy and geochemistry of sulfide-bearing rocks and ores discovered within the Menez Gwen Hydrothermal Field are studied. Samples were taken during Cruise 49 of R/V Akademik Mstislav Keldysh of the p.p. Shirshov Institute of Oceanology. Mineral composition of rocks and ores were studied by traditional methods of optical microscopy, scanning electron microscopy (CAMSCAN), and microprobe analysis (EPMA SX-50). Contents of trace elements were determined by laser ablation inductively coupled plasma - mass spectrometry (LA-ICP-MS). Zn-Cu ore comprises zonal sulfide chimney intergrowths. Numerous Se-rich copper ore fragments occur in volcanomictic layered gritstones and/or barite slabs. Mineral composition, zonality and association of trace elements in ore are typical of black smokers formed at the basalt base near the Azores Triple Junction in the MAR. Obtained results make it possible to reconstruct formation history of the Menez Gwen Hydrothermal Field into the high-temperature (Cu-Se association in ore clasts), medium-temperature (Zn-Cu-As association in ore), and recent (Ba-SiO2 association) stages.